COMP261
Algorithms and Data Structures
2024 Tri 1

Jyoti Sahni

Jyoti.sahni@ecs.vuw.ac.nz
Office Hours (COMP261): AM414, Thursday 10:00 - 12:00



mailto:jyoti.sahni@ecs.vuw.ac.nz

Recap: Definition

A flow network is a connected, directed graph ¢ =
(V,E) where:

* Each edge, e, has a non-negative, integer capacity c,.
* One (or more) vertex is labelled as a source s e V.

* One (or more) vertex is labelled as sinkt e V.

* No edge enters the source and no edge leaves the sink.




Recap: Solving Maximum flow
problem

How can we solve this problem ?

1. Look for paths from source to
destination and count them if they
have capacities left

2. Repeat until no paths from source to
destination is found with capacities
left

3. There could be a possibility that the
paths we choose are not optimal —
have an option of reversing the
decisions. For every edge in the
original graph, we add an “imaginary”
reverse edge




Solving Maximum flow problem

a——>b——>d—-—>f1
a —c¢c—od—>f9
a —>b—>e —>f9
a —>c¢c—>d-—>b—>e —>f1




Ford-Fulkerson method

It is generally called a method rather than an algorithm, as
it encompasses several different implementations with
different running times.

* Based on 2 important ideas:
e Residual Graphs (includes reverse edges)
 Augmentation paths (path in a residual graph)




Residual Graph

Given a network G and a flow f, we construct a residual
graph Gy, representing places where flow can still be

added to f, including places where existing flow can be
decreased.

*Gy is defined as follows:
*G¢ contains same nodes a G.
*Forward edges: for each edge e = (u,v ) of G for
which f,< ¢, include an edge e’ = (u,v) in Grwith
capacity ¢, — f,
*Backward edges (represent decreasing flow): for each
edge e = (u,v) of G with f, > 0, include an edge
e’ = (v,u) in Gpwith capacity f,




Residual network

* |Initially flow is O for all edges.

20 20

20

20

Residual network

G contains same nodes a G.

Forward edges: for each edge e = (u,v) of G for which f,<
Ce, include an edge e’ = (u, v) in Ggwith capacity ¢, — £

Backward edges: for each edge e = (u, v ) of G with f, > 0, include
an edge e’ = (v,u) in Gwith capacity f,




Residual network

G contains same nodes a G.

Forward edges: for each edge e = (u,v) of G for which f,<
Ce, include an edge e’ = (u, v) in Ggwith capacity ¢, — £

Backward edges: for each edge e = (u, v ) of G with f, > 0, include
an edge e’ = (v,u) in Gwith capacity f,




Example

Forward edges

4
2 Backward edges 5




Example

IR\ o

Residual network
\5[\ b\ 1 >

2

10




Augmentation Path

* Augmentation path: Given a network G and a flow f.
Augmentation path is any flow g on residual graph
G from source s to destination t.

* Augmentation path g can be added to f to get a new
flow on G.

* g, (forward edge) adds to f,

* g, (backward edge) subtracts from f, (equivalent of
reversing our previous decision)




Example

Residual Graph

Overall flow is given by:
fe T ge — g:e

20/ 20




Augmenting Paths

* How much flow can be added in each step?

* Bottleneck (P, Gy) : the smallest capacity in Gy on any
edge of P. If bottleneck (P, Gf) > 0 then we can
increase the flow by sending bottleneck (P, Gs) along
the path P.

u u
20
20 20 10/20 <>\
30 10/30
20\ * 10 R(\ 10/30

v v

Bottleneck (P, Gf) = min{(c,) : eisin P}




Ford-Fulkerson method

* Follows a greedy approach. Iteratively increase the
value of flow.

FordFulkerson(G,s,t)
Let f, =0 for all edges (no flow anywhere)
Initialize Residual Graph RG // for every forward edge in the
original graph G add a reverse edge with a capacity ©
maxFlow = 0
Repeat
Find some P path from sto tin RG such that ¢, > 0 for all
edges in P
if P exists
pathFlow = Bottleneck (P,RG)
maxFlow = maxFlow + pathFlow
Output (P,pathflow) as an augmentation path
Update RG
Endif
Until the RG has no more augmentation paths.
Output maxFlow

Note: Ford-Fulkerson does not state how to find augmentation paths.




Updating Residual Graph

For each edge e= (u,v) € P:
faw) = fauv) + pathFlow //add flow
Cup)= Cuw) — pathFlow //reduce capacity

Cowu) = Cwu) T pathFlow//increase capacity in reverse edge
EndFor

Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson
method that uses BFS for finding augmenting paths.




BFS(RG,s,t)
Define augPath as ArrayList of edges
q := queue()
q.push(s)
backpointer(v) = null for all v // backpointer data-structure to hold
//edges that lead to the vertex
while !q.isEmpty()
cur := q.pull()
for each outedge e of cur in RG do
if e.toCity! = s and backpointer(e.toCity) == null and e.cap # 0
backpointer(e.tocity):=e
if(backpointer(t)! = null) //found a path from s to t. Build it now from reverse
pathEdge = backpointer(t)
while(pathEdge ! = null)
augPath.add(pathEdge)
pathEdge = backpointer(pathEdge. fromCity)
endWhile
Collections.reverse(augPath)
return augPath
endIF
q.push(e.toCity)
endIf
endFor
endWhile
return null




Next Lecture

* Example — Edmonds-Karp algorithm




