COMP261 Algorithms and Data Structures 2024 Tri 1

Jyoti Sahni

jyoti.sahni@ecs.vuw.ac.nz
Office Hours (COMP261): AM414, Thursday 10:00-12:00

Recap: Definition

A flow network is a connected, directed graph $G=$ (V, E) where:

- Each edge, e, has a non-negative, integer capacity c_{e}.
- One (or more) vertex is labelled as a source $s \in V$.
- One (or more) vertex is labelled as sink $\mathrm{t} \epsilon V$.
- No edge enters the source and no edge leaves the sink.

Recap: Solving Maximum flow problem

How can we solve this problem?

1. Look for paths from source to destination and count them if they have capacities left
2. Repeat until no paths from source to destination is found with capacities left
3. There could be a possibility that the paths we choose are not optimal have an option of reversing the decisions. For every edge in the original graph, we add an "imaginary" reverse edge

Solving Maximum flow problem

Ford-Fulkerson method

It is generally called a method rather than an algorithm, as it encompasses several different implementations with different running times.

- Based on 2 important ideas:
- Residual Graphs (includes reverse edges)
- Augmentation paths (path in a residual graph)

Residual Graph

Given a network G and a flow f, we construct a residual graph G_{f}, representing places where flow can still be added to f, including places where existing flow can be decreased.

- G_{f} is defined as follows:
- G_{f} contains same nodes a G.
-Forward edges: for each edge $e=(u, v)$ of G for which $f_{e}<c_{e}$, include an edge $e^{\prime}=(u, v)$ in G_{f} with capacity $c_{e}-f_{e}$
-Backward edges (represent decreasing flow): for each edge $e=(u, v)$ of G with $f_{e}>0$, include an edge $e^{\prime}=(v, u)$ in G_{f} with capacity f_{e}

Residual network

- Initially flow is 0 for all edges.

Residual network
G_{f} contains same nodes a G.
Forward edges: for each edge $e=(u, v)$ of G for which $f_{e}<$ c_{e}, include an edge $e^{\prime}=(u, v)$ in G_{f} with capacity $c_{e}-f_{e}$
Backward edges: for each edge $e=(u, v)$ of G with $f_{e}>0$, include an edge $e^{\prime}=(v, u)$ in G_{f} with capacity f_{e}

Residual network

G_{f} contains same nodes a G.
Forward edges: for each edge $e=(u, v)$ of G for which $f_{e}<$ c_{e}, include an edge $e^{\prime}=(u, v)$ in G_{f} with capacity $c_{e}-f_{e}$
Backward edges: for each edge $e=(u, v)$ of G with $f_{e}>0$, include an edge $e^{\prime}=(v, u)$ in G_{f} with capacity f_{e}

Example

Example

Augmentation Path

- Augmentation path: Given a network G and a flow f. Augmentation path is any flow g on residual graph G_{f} from source s to destination t.
- Augmentation path g can be added to f to get a new flow on G.
- g_{e} (forward edge) adds to f_{e}
- g_{e}^{\prime} (backward edge) subtracts from f_{e} (equivalent of reversing our previous decision)

Example

Overall flow is given by:

Augmenting Paths

- How much flow can be added in each step?
- Bottleneck $\left(P, G_{f}\right)$: the smallest capacity in G_{f} on any edge of P. If bottleneck $\left(P, G_{f}\right)>0$ then we can increase the flow by sending bottleneck (P, G_{f}) along the path P.

Bottleneck $\left(P, G_{f}\right)=\min \left\{\left(C_{e}\right): e\right.$ is in $\left.P\right\}$

Ford-Fulkerson method

- Follows a greedy approach. Iteratively increase the value of flow.

FordFulkerson(G, s, t)

Let $f_{e}=0$ for all edges (no flow anywhere)
Initialize Residual Graph $R G$ // for every forward edge in the original graph G add a reverse edge with a capacity 0
maxFlow $=0$
Repeat
Find some P path from s to t in $R G$ such that $c_{e}>0$ for all edges in P

```
if P exists
        pathFlow = Bottleneck (P,RG)
```

 maxFlow \(=\) maxFlow + pathFlow
 Output (\(P\),pathflow) as an augmentation path
 Update \(R G\)
 Endif
Until the $R G$ has no more augmentation paths. Output maxFlow

Note: Ford-Fulkerson does not state how to find augmentation paths.

Updating Residual Graph

$$
\begin{aligned}
& \text { For each edge } \mathrm{e}=(u, v) \in P \text { : } \\
& f_{(u, v)}=f_{(u, v)}+\text { pathFlow //add flow } \\
& c_{(u, v)}=c_{(u, v)}-\text { pathFlow //reduce capacity } \\
& c_{(v, u)}=c_{(v, u)}+\text { pathFlow//increase capacity in reverse edge } \\
& \text { EndFor }
\end{aligned}
$$

Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson method that uses BFS for finding augmenting paths.

```
BFS(RG, s,t)
Define augPath as ArrayList of edges
q:= queue()
q.push(s)
backpointer (v) = null for all v // backpointer data-structure to hold
                                    //edges that lead to the vertex
while !q.isEmpty()
    cur:= q.pull()
    for each outedge e of cur in RG do
    if e.toCity! =s and backpointer(e.toCity) == null and e.cap #= 0
                backpointer(e.tocity):=e
                if(backpointer (t)! = null) // found a path from s to t. Build it now from reverse
                    pathEdge = backpointer ( }t\mathrm{ )
                while(pathEdge! = null)
                    augPath.add(pathEdge)
                            pathEdge = backpointer(pathEdge.fromCity)
                endWhile
                Collections.reverse(augPath)
                return augPath
                endIF
                q.push(e.toCity)
        endIf
    endFor
endWhile
return null
```


Next Lecture

- Example - Edmonds-Karp algorithm

