
COMP261
Algorithms and Data Structures

2024 Tri 1

Jyoti Sahni
jyoti.sahni@ecs.vuw.ac.nz

Office Hours (COMP261): AM414, Thursday 10:00 – 12:00

mailto:jyoti.sahni@ecs.vuw.ac.nz

Recap: Definition

A flow network is a connected, directed graph 𝐺 =
𝑉, 𝐸 where:

• Each edge, 𝑒, has a non-negative, integer capacity 𝑐𝑒.

• One (or more) vertex is labelled as a source 𝑠 𝜖 𝑉.

• One (or more) vertex is labelled as sink t 𝜖 𝑉.

• No edge enters the source and no edge leaves the sink.

s

a

b

c

d

t
20

10

30
10

10

20

10

10
10

Recap: Solving Maximum flow
problem

How can we solve this problem ?

𝑏

𝑎

𝑓

𝑑

𝑒

𝑐

10
10

10

10

10

1

10

10

𝑏

𝑎

𝑓

𝑑

𝑒

𝑐

10
10

10

10 1

10

1. Look for paths from source to
destination and count them if they
have capacities left

2. Repeat until no paths from source to
destination is found with capacities
left

3. There could be a possibility that the
paths we choose are not optimal –
have an option of reversing the
decisions. For every edge in the
original graph, we add an “imaginary”
reverse edge

Solving Maximum flow problem

𝑏

𝑎

𝑓

𝑑

𝑒

𝑐

10
10

10

10

10

1

10

𝑎 −→ 𝑏 −→ 𝑑 −→ 𝑓 1
𝑎 −→ 𝑐 −→ 𝑑 −→ 𝑓 9
𝑎 −→ 𝑏 −→ 𝑒 −→ 𝑓 9
𝑎 −→ 𝑐 −→ 𝑑 −→ 𝑏 −→ 𝑒 −→ 𝑓 1

Ford-Fulkerson method

It is generally called a method rather than an algorithm, as
it encompasses several different implementations with
different running times.

•Based on 2 important ideas:
• Residual Graphs (includes reverse edges)
• Augmentation paths (path in a residual graph)

Residual Graph

Given a network 𝐺 and a flow 𝑓, we construct a residual
graph 𝐺𝑓 , representing places where flow can still be
added to 𝑓, including places where existing flow can be
decreased.

•𝐺𝑓 is defined as follows:

•𝐺𝑓 contains same nodes a 𝐺.

•Forward edges: for each edge 𝑒 = 𝑢, 𝑣 of 𝐺 for
which 𝑓𝑒< 𝑐𝑒 , include an edge 𝑒′ = 𝑢, 𝑣 in 𝐺𝑓with
capacity 𝑐𝑒 − 𝑓𝑒
•Backward edges (represent decreasing flow): for each
edge 𝑒 = 𝑢, 𝑣 of 𝐺 with 𝑓𝑒 > 0, include an edge
𝑒′ = 𝑣, 𝑢 in 𝐺𝑓with capacity 𝑓𝑒

Residual network

𝑢

𝑠 𝑡

𝑣

20 20

20
20

30

𝑢

𝑠 𝑡
0

20

20

00

𝑣

30

𝐺𝑓 contains same nodes a 𝐺.

Forward edges: for each edge 𝑒 = 𝑢, 𝑣 of 𝐺 for which 𝑓𝑒<
𝑐𝑒 , include an edge 𝑒′ = 𝑢, 𝑣 in 𝐺𝑓with capacity 𝑐𝑒 − 𝑓𝑒
Backward edges: for each edge 𝑒 = 𝑢, 𝑣 of 𝐺 with 𝑓𝑒 > 0, include
an edge 𝑒′ = 𝑣, 𝑢 in 𝐺𝑓with capacity 𝑓𝑒

Residual network

20

20

0

0

• Initially flow is 0 for all edges.

Residual network

𝑢

𝑠 𝑡

𝑣

20 / 20 20

20
20/20

20/ 30

𝑢

𝑠 𝑡
20

20

20
20

𝑣

10

𝐺𝑓 contains same nodes a 𝐺.

Forward edges: for each edge 𝑒 = 𝑢, 𝑣 of 𝐺 for which 𝑓𝑒<
𝑐𝑒 , include an edge 𝑒′ = 𝑢, 𝑣 in 𝐺𝑓with capacity 𝑐𝑒 − 𝑓𝑒
Backward edges: for each edge 𝑒 = 𝑢, 𝑣 of 𝐺 with 𝑓𝑒 > 0, include
an edge 𝑒′ = 𝑣, 𝑢 in 𝐺𝑓with capacity 𝑓𝑒

0

0

0

20

0

Example

9

𝑎

𝑠 𝑡

𝑏

𝑐

𝑑

7/8

5/5

6/6

8/9

4/6

2/3

2/44/4
3/4

𝑎

𝑠 𝑡

𝑏

𝑐

𝑑

1

0

1

0
1

0
2

2

1

𝑎

𝑠 𝑡

𝑏

𝑐

𝑑

7

6

3

5
2

4
2

4

8
Forward edges

Backward edges

Example

10

𝑎

𝑠 𝑡

𝑏

𝑐

𝑑

1

0

1

0

1

0
2

2

1

2

2

7

6

4

8

43

5

𝑎

𝑠 𝑡

𝑏

𝑐

𝑑

7/8

5/5

6/6

8/9

4/6

2/3

2/44/4
3/4

Residual network

Augmentation Path

•Augmentation path: Given a network 𝐺 and a flow 𝑓.
Augmentation path is any flow 𝑔 on residual graph
𝐺𝑓 from source 𝑠 to destination 𝑡.

•Augmentation path 𝑔 can be added to 𝑓 to get a new
flow on 𝐺.

•𝑔𝑒 (forward edge) adds to 𝑓𝑒
•𝑔𝑒

′ (backward edge) subtracts from 𝑓𝑒 (equivalent of
reversing our previous decision)

Example

𝑢

𝑠 𝑡

𝑣

20 / 20 0/20

0/20 20/20

20/ 30

𝑢

𝑠 𝑡
20

20

20 20

20

𝑣

10

Residual Graph

Overall flow is given by:
𝒇𝒆 + 𝒈𝒆 − 𝒈𝒆

′

20/ 20

𝑢

𝑠 𝑡

𝑣

20 / 20 20/20

20/20

20/ 30 20/ 20

𝑢

𝑠 𝑡

𝑣

20 / 20 20/20

20/ 20
20/20

0

00

0 0

0

Augmenting Paths

•How much flow can be added in each step?

•Bottleneck (𝑃, 𝐺𝑓) : the smallest capacity in 𝐺𝑓 on any
edge of 𝑃 . If bottleneck (𝑃, 𝐺𝑓) > 0 then we can
increase the flow by sending bottleneck (𝑃, 𝐺𝑓) along
the path 𝑃.

𝑢

𝑠 𝑡

𝑣

20 20

20 10

30

𝑢

𝑠 𝑡

20

20 10/30

10/30

𝑣

10/20

Bottleneck 𝑃, 𝐺𝑓 = min{ 𝑐𝑒 ∶ 𝑒 𝑖𝑠 𝑖𝑛 𝑃}

Ford-Fulkerson method
• Follows a greedy approach. Iteratively increase the

value of flow.

Note: Ford-Fulkerson does not state how to find augmentation paths.

𝑭𝒐𝒓𝒅𝑭𝒖𝒍𝒌𝒆𝒓𝒔𝒐𝒏(𝑮, 𝒔, 𝒕)
Let 𝑓𝑒 = 0 for all edges (no flow anywhere)
Initialize Residual Graph 𝑅𝐺 // for every forward edge in the
original graph 𝐺 add a reverse edge with a capacity 0
𝑚𝑎𝑥𝐹𝑙𝑜𝑤 = 0

Repeat
Find some 𝑃 path from 𝑠 to 𝑡 in 𝑅𝐺 such that 𝑐𝑒 > 0 for all
edges in 𝑃

if 𝑃 exists
𝑝𝑎𝑡ℎ𝐹𝑙𝑜𝑤 = 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 𝑃, 𝑅𝐺
𝑚𝑎𝑥𝐹𝑙𝑜𝑤 = 𝑚𝑎𝑥𝐹𝑙𝑜𝑤 + 𝑝𝑎𝑡ℎ𝐹𝑙𝑜𝑤
Output 𝑃, 𝑝𝑎𝑡ℎ𝑓𝑙𝑜𝑤 as an augmentation path
Update 𝑅𝐺

Endif
Until the 𝑅𝐺 has no more augmentation paths.
Output 𝑚𝑎𝑥𝐹𝑙𝑜𝑤

Updating Residual Graph

For each edge e = (𝑢, 𝑣) ∈ 𝑃:
𝑓(𝑢,𝑣) = 𝑓(𝑢,𝑣) + 𝑝𝑎𝑡ℎ𝐹𝑙𝑜𝑤 //add flow

𝑐(𝑢,𝑣)= 𝑐(𝑢,𝑣) − 𝑝𝑎𝑡ℎ𝐹𝑙𝑜𝑤 //reduce capacity

𝑐(𝑣,𝑢) = 𝑐(𝑣,𝑢) + 𝑝𝑎𝑡ℎ𝐹𝑙𝑜𝑤//increase capacity in reverse edge

EndFor

Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson
method that uses BFS for finding augmenting paths.

𝑩𝑭𝑺(𝑹𝑮, 𝒔, 𝒕)
Define 𝑎𝑢𝑔𝑃𝑎𝑡ℎ as ArrayList of edges
𝑞 ∶= 𝑞𝑢𝑒𝑢𝑒()
𝑞. 𝑝𝑢𝑠ℎ(𝑠)
𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑣) = 𝑛𝑢𝑙𝑙 for all 𝑣 // backpointer data-structure to hold

//edges that lead to the vertex
while !𝑞. 𝑖𝑠𝐸𝑚𝑝𝑡𝑦()

𝑐𝑢𝑟 ∶= 𝑞. 𝑝𝑢𝑙𝑙()
for each outedge 𝑒 of 𝑐𝑢𝑟 in 𝑅𝐺 do
if 𝑒. 𝑡𝑜𝐶𝑖𝑡𝑦! = 𝑠 and 𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟 𝑒. 𝑡𝑜𝐶𝑖𝑡𝑦 == 𝑛𝑢𝑙𝑙 and 𝑒. 𝑐𝑎𝑝 ≠ 0

𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑒. 𝑡𝑜𝑐𝑖𝑡𝑦):= 𝑒
if(𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑡)! = 𝑛𝑢𝑙𝑙) // found a path from s to t. Build it now from reverse

p𝑎𝑡ℎ𝐸𝑑𝑔𝑒 = 𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑡)
while(𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒 ! = 𝑛𝑢𝑙𝑙)

𝑎𝑢𝑔𝑃𝑎𝑡ℎ. 𝑎𝑑𝑑(𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒)
𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒 = 𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟(𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒. 𝑓𝑟𝑜𝑚𝐶𝑖𝑡𝑦)

endWhile
𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠. 𝑟𝑒𝑣𝑒𝑟𝑠𝑒(𝑎𝑢𝑔𝑃𝑎𝑡ℎ)

return 𝑎𝑢𝑔𝑃𝑎𝑡ℎ
endIF
𝑞. 𝑝𝑢𝑠ℎ(𝑒. 𝑡𝑜𝐶𝑖𝑡𝑦)

endIf
endFor

endWhile
return null

Next Lecture

•Example – Edmonds-Karp algorithm

