
COMP261 
Algorithms and Data Structures 

2024 Tri 1 

Jyoti Sahni
jyoti.sahni@ecs.vuw.ac.nz

Office Hours (COMP261): AM414, Thursday 10:00 – 12:00 

mailto:jyoti.sahni@ecs.vuw.ac.nz


Recap: Spanning Trees

Given a connected, undirected, weighted graph, a 
spanning tree is a subgraph that contains all the nodes but 
has no cycles (is a tree)

A spanning tree is defined only for a connected graph, 
because a tree is always connected, and in a disconnected 
graph of n vertices we cannot find a connected subgraph 
with n vertices



Recap: Spanning trees in Weighted 
graphs

The spanning-tree problem

•Add nodes to partial tree

•Add acyclic edges

Minimum-cost-spanning-tree problem

•Given a connected, weighted, undirected graph, find a
spanning tree of minimum weight

•The above approaches suffice with minor changes:
•Add nodes to partial tree approach: Prim’s Algorithm
•Add acyclic edges approach : Kruskal’s algorithm



Prim’s Algorithm

Given: a connected undirected weight graph 

4

Initialize fringe to have a root node with costToTree = 0 

all nodes are unvisited;

Repeat until all nodes are visited {
Choose from fringe the unvisited node (n*) with minimum 

costToTree;

Add the corresponding edge to the spanning tree, set n* as visited

for each (edge (n*, n’) with one end-node n*) {
if (n’ is not visited) then add <n’, (n*,n’), cost(n*,n’)> into the fringe;

}
}



Kruskal’s Algorithm

Given: a connected undirected weight graph (N nodes, M
edges)

Initialize an empty edge set T. 

Sort all graph edges by the ascending order of their weight values. 

For each edge in the sorted edge list 
Check whether it will create a cycle with the edges inside T. 
If the edge doesn't introduce any cycles, add it into T. 
If T has (V-1) edges, exit the loop.

return T



Complexity: Weighted Spanning Trees

•Depends on data structure
• Naïve approach, if using adjacency list with linear search

• Prims : O V2

• Kruskal’s: O sorting of edges + V |𝑉 + E| ~O V2

// |E| ≈ some multiple of V

• Priority queue
• Prim’s algorithm becomes similar to Dijkstra’s
• Complexity: O(|E|Log|V|))

• Can we do better in Kruskal’s algorithm?
•A new data structure: disjoint sets

6



A B

C D

F

E

G

A

C

D

E

B

FG

In the graph but 

not in the search 

tree

Back edge: Edge which is 
missing in the DFS tree but 
present in the graph

All the back edges which DFS skips over are part of cycles

Recap: Cycle Detection using DFS



Recap: Cycle Detection using DFS
A B

C D

F

E

G

B
C
D

A

E

G
F

A, D, E
A, D
C, B, E

B, D, F, G
E, G
E, F

C, B
DFS (A, -1), visited(A) = true

DFS (C, A), visited(C) = true

DFS (D, C), visited(D) =true

DFS (B, D), visited(B)=true

A has already been visited and A≠ parent(B). Cycle found

• Steps:

- Start DFS traversal

- Keep track of parent of the node being 
visited

- If you find a node that has already been 
visited but is not the parent of the current 
node being visited – there is a cycle

2
1
0

3
4
5

6



Finding a cycle – another approach

2

4

3
1

5

7

6

1 2 3

4
5 6

7

Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 



Finding a cycle – another approach
Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 

2

4

3
1

5

7

6

1 2 3

4
5 6

7



Finding a cycle – another approach
Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 

2

4

3
1

5

7

6

1 2 3

4

5 6

7



Finding a cycle – another approach
Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 

2

4

3
1

5

7

6

1 2 3

4

5 6

7



Finding a cycle – another approach
Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 

2

4

3
1

5

7

6

1 2 3

4

5 6

7



Finding a cycle – another approach
Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 

2

4

3
1

5

7

6

1 2 3

4

5 6

7



1 and 6 are in the same tree – ignore

Finding a cycle – another approach
Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 

2

4

3
1

5

7

6

1 2 3

4

5 6

7

Can Kruskal’s use this approach? 



Kruskal’s with the new approach 
Order of edges considered: (1,2), (3,4), (5,6), (5,7), (1,5), 

(1,6), (2,3), (4,7), (4,5) 

2

4

3
1

5

7

6

1 2 3

4

5 6

7

Stop when N-1 edges have been found



Kruskal’s Algorithm

•Merge trees
• Initially, each node is a single-node tree
•At each step, merge two trees into one
•The merge cost is the minimum (min-cost edge)

A

B

C

E

D

I

H

G

J

F

5

1

3

7

25

9

6
2

3

23

1

18

417

10
8

4
10

14

6



Kruskal’s Algorithm

Given: a connected undirected weight graph (N nodes, M edges)

Set forest as N node sets, each containing a node;

Set fringe as a priority queue of all the edges 〈n1, n2, length〉;

Set tree as an empty set of edges;

Repeat until forest contains only one tree or edges is empty {
Get and remove 〈n1*, n2*, length*〉 as the edge with minimum length from 

fringe; 
If (n1* and n2* are in different sets in forest) {

Merge the two sets in forest;
Add the edge to tree;

}
}
return tree;



Kruskal’s Algorithm

Given: a connected undirected weight graph (N nodes, M edges)

Set forest as N node sets, each containing a node;

Set fringe as a priority queue of all the edges 〈n1, n2, length〉;

Set tree as an empty set of edges;

Repeat until forest contains only one tree or edges is empty {
Get and remove 〈n1*, n2*, length*〉 as the edge with minimum length from 

fringe; 
If (n1* and n2* are in different sets in forest) {

Merge the two sets in forest;
Add the edge to tree;

}
}
return tree;

Need a way to –

• Efficiently find if two nodes are in sets 

in a forest

• Efficiently merge (Union) two trees

A new data structure: disjoint sets



Find and Union Operation

•Find: Determine whether two elements belong to the 
same set

•Union: merge two sets into one

•The cost of Find and Union depends on the data 
structure of the forest: set of sets

B

C

E

D

I

J

5

1

3 9
5

4
4

6

B I

C D

J E

forest



Set of Sets: Data Structures

•Option 1: set of sets (e.g. HashSet<HashSet<Node>>)
•Cost of find: iterate over all sets 
•Cost of union: add all the elements from one set to 

another 

A

B

D

C

IH

G

F

E

J



Set of Sets: Data Structures

•Option 1: set of sets (e.g. 
HashSet<HashSet<Node>>)
•Cost of find: iterate over all sets, 𝑂(𝑛)
•Cost of union: add all the elements from one set to 

another, 𝑂(𝑛)

A

B

D

C

IH

G

F

E

J



Set of Sets: Data Structures

•Option 2: mark each node with set ID
•Cost of find: check whether the two elements have the 

same set ID 1)
•Cost of union: iterate all the nodes, change the set ID 

of one set to another

A B DC IHGFE J

1 1 112 2 23 33

A

B

D

C

IH

G

F

E

J



Set of Sets: Data Structures

•Option 2: mark each node with set ID
•Cost of find: check whether the two elements have the 

same set ID 𝑂(1)1)
•Cost of union: iterate all the nodes, change the set ID 

of one set to another 𝑂(𝑛)

A B DC IHGFE J

1 1 112 2 23 33

A

B

D

C

IH

G

F

E

J



Set of Sets: Data Structures
•Option 3 (the best): disjoint-set (union-find) data structure
• Set of inverted trees
• Each set is represented by a linked tree with links pointing 

towards the root
• Forest = set of root nodes

A

G

X

Q

NW

R
S

C

E

T D

R

Y

H

J

U

Z

K



Disjoint Set
// make a new set with element x

MakeSet(x) {

x.parent = x;

add x to forest;

}

// find the root of the set that x belongs to

Find(x) {

if (x.parent == x) { // x is the root

return x;

} else {

root = Find(x.parent);

return root;

}

}

Recursively go 

up to the root

x

A

G

Q

W

C

E

T

R

Find(A) = A
Find(G) = A
Find(E) = A
Find(W) = A

…



Disjoint Set

// union the sets of x and y
Union(x, y) {

xroot = Find(x);
yroot = Find(y);
if (xroot == yroot) {

// x and y belong to 
// the same set
return;

} else {
xroot.parent = yroot;
remove xroot from forest;

}
}

A

G

Q

W

C

E

T

R

x

y

xroot
yroot

Union(E,T)



Disjoint Set

A

G

Q

W

C

E

T

R

J

U

K

xroot

yroot

x

y

Union(E,U)// union the sets of x and y
Union(x, y) {

xroot = Find(x);
yroot = Find(y);
if (xroot == yroot) {

// x and y belong to 
// the same set
return;

} else {
xroot.parent = yroot;
remove xroot from forest;

}
}



Disjoint Set

A

G

Q

W

C

E

T

R

J

U

K

yroot

xroot

y

x

Union(U,E)

Order can change the depth of the resultant tree

// union the sets of x and y
Union(x, y) {

xroot = Find(x);
yroot = Find(y);
if (xroot == yroot) {

// x and y belong to 
// the same set
return;

} else {
xroot.parent = yroot;
remove xroot from forest;

}
}



Disjoint Set
• To reduce complexity, always merge shorter trees into deeper ones

Union(x, y) {

xroot = Find(x);

yroot = Find(y);

if (xroot == yroot) {

return;

} else {

if (xroot.depth < yroot.depth) {

xroot.parent = yroot;

remove xroot from forest;

} else {

yroot.parent = xroot;

remove yroot from forest;

if (xroot.depth == yroot.depth)

xroot.depth ++;

}

}

MakeSet(x) {

x.parent = x;

x.depth = 0;

add x to forest;

}

Find(x) {

if (x.parent == x) {

return x;

} else {

root = Find(x.parent);

return root;

}

}



Kruskal’s with Disjoint Sets  
• If we use Disjoint sets data structure.
• We maintain each connected component as a disjoint set:
• Initially each vertex is in its own disjoint set:𝑂(|𝑉|)
• Edges are maintained in a sorted order or in a priority 

queue:𝑂(|𝐸|log |𝐸|)
• When considering an edge (𝑢, 𝑣) to include, we check if 𝑢 and 𝑣

are in the same disjoint set (Find operations):
• If yes, they form a cycle
• Else, we include the edge and perform a Union operation on 

disjoint sets containing 𝑢 and 𝑣.
• Since we always merge shorter trees into deeper ones, the 

worst case time complexity of Find and Union is 𝑂 log 𝑉

• In worst case we iterate through all edges: 𝑂 𝐸 log 𝑉 .
• Overall complexity: 𝑂(|𝑉|+ 𝐸 log 𝐸 + 𝐸 log 𝑉 = 
𝑂 𝐸 log 𝐸 (as 𝐸 >= 𝑉 − 1)



Test: May 9 

Syllabus: Everything we've covered 
since week 7 up to today

Best of luck for the test!


