COMP261
Algorithms and Data Structures
2024 Tri 1

Jyoti Sahni

Jyoti.sahni@ecs.vuw.ac.nz
Office Hours (COMP261): AM414, Thursday 10:00 - 12:00

mailto:jyoti.sahni@ecs.vuw.ac.nz

Spanning Trees

Given a connected, undirected, weighted graph, a
spanning tree is a subgraph that contains all the nodes but
has no cycles (is a tree)

A spanning tree is defined only for a connected graph,
because a tree is always connected, and in a disconnected
graph of n vertices we cannot find a connected subgraph
with n vertices

Spanning Tree

* Many applications

 Design of networks (road, telecommunication,
transportation etc.) - cover the network with minimum
cost

* Object detection, handwriting recognition

* Cluster analysis (e.g. gene expression clustering)
4

Muddy City Problem

* Consider a city with no
concrete roads.

* Getting around the city is

e difficult especially after
rainstorms

) | * We need to identify the
The number of paving stones between each
house represents the cost of paving that route ~ Streets that must be paved,
but we don’t want to spend
The best route is that connects all the houses, h
but uses as few paving stones as possible more money than necessary.

mage source: https://personal.utdallas.edu/~besp/teaching/mst-applications.pdf

Some points to note

* Every connected graph has at least one spanning tree.

*Given a connected graph of n vertices, what would be
the number of edges in the corresponding spanning tree ?

* Theorem: Any tree with n vertices has n — 1 edges.
* Proof (By induction)

O O Q—Q\Q

Some points to note

In an unweighted graph, we don’t care about which edges
are there in our tree : as long as the tree contains all the
edges.

*In weighted graph, in most of the cases we do require to
consider the weights — as we want to minimize the cost
involved

* Minimum Cost Spanning tree

Finding Unweighted Spanning
Trees

Different approaches to the spanning-tree problem:

Do a graph traversal (e.g., depth-first search, but any
traversal will do) and keep track of edges that form a tree

OR

|lterate through edges and add to output any edge that
doesn’t create a cycle

Spanning Tree via DFS

DFS reaches each node. We add one edge to connect an
unvisited node to the already visited nodes. Order affects

result. spanning_tree_dfs(Graph G) {

for each node i: .marked = false
for some node i: (i)

}
f(Node i) {

I.marked = true
for each j adjacent to i:
if(li.marked) {
add(i,j) to output
f(j) // DFS

Example

DFS calls a
f(1)

— 2,5,6

—1,3,7

— 3,5,7

—1,4,6,7

N[oo | B W N
N
AN

— 2,4,5

Example

DFS calls

f(1)
f(2)

Output: (1,2)

— 2,5,6

—1,3,7

— 3,5,7

—1,4,6,7

N| o) | A W N R

— 2,4,5

Example

DFS calls
f(1)
f(2)
f(3)

Output: (1,2), (2,3)

— 2,5,6

—1,3,7

— 3,5,7

—1,4,6,7

— 2,4,5

Example

DFS calls
f(1)
f(2)
f(3)
f(4)

Output: (1,2), (2,3), (3,4)

— 2,5,6

—1,3,7

— 3,5,7

—1,4,6, 7

— 2,4,5

Example

DFS calls @ 1 256
f(1) 2 |—1,3,7
f(2) 3 |, 2,4
f(3)

4 357
f(4)
f(5) 5 |—1,4,6,7
6 > 1,5
7 24,5

Output: (1,2), (2,3), (3,4), (4,5)

Example

DFS calls @ 1 =256
f(1) 2 |—1,3,7
f(2) 3 |, 2,4
f(3)

4 +—3,57
f(4)
f(5) 5 |—1,4,6,7
f(6) 6 +— 1,5

7 2,4,5

Output: (1,2), (2,3), (3,4), (4,5),
(5,6)

Example

DFS calls @ 1 =256
£(1) e 2 1 1,3,7
() &
£(3
3) (7) T 35,7

f(4)

£(5) ° a 5 |—1,4,6,7
f(6) 6 |— 1,5
f(7) ° 7 2,45
Output: (1,2), (2,3), (3,4), (4,5),
(5,6), (5,7)

Example

DFS calls 6 1 ™256
f(1) 2 | —1,3,7
f(2) G ° 3

© O s
£(5) ° ’0 5 |—1,4,6,7
f(6) — 1,
o ° 6 1,5

/7 ™2,4,5
Output: (1,2), (2,3), (3,4), (4,5),
(5,6), (5,7)

Example

6 1 _’2,5,6
2 —1,3,7
(7 2 357

° 0 5 |—146,7
° 6 +— 1,5

/7 ™2,4,5
Output: (1,2), (2,3), (3,4), (4,5),
(5,6), (5,7)

Another approach

Iterate through edges; output any edge that does not
create a cycle

Consider edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

¢
o e’a

Example

Edges in some arbitrary order:
, (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)

Example

Edges in some arbitrary order:
, (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:
, (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6)

Example

Edges in some arbitrary order:
. . : (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),
(5,7)

Example

Edges in some arbitrary order:
’)) 4 (1|6)| (2|7)| (2|3)! (4!5)I (4I7)

Output: (1,2), (3,4), (5,6),
(5,7), (1,5)

Example

Edges in some arbitrary order:
’)) 4 4 (2!7)| (2|3)| (4!5)I (4I7)

Output: (1,2), (3,4), (5,6),
(5,7), (1,5)

Example

Edges in some arbitrary order:
’)) ’ 4 4 (2|3)| (4|5)I (4I7)

Output: (1,2), (3,4), (5,6),
(5,7), (1,5)

Example

Edges in some arbitrary order:
’)) ’ ’ 4) (4l5)| (4I7)

Output: (1,2), (3,4), (5,6), T —
(5,7, (1,9), (2,3) edges

Complexity

* Spanning tree via DFS: Adjacency matrix O(V?),

Adjacency list: O(V + E)
* [terating through edges: Involves deciding if addition of an edge
could form a cycle.

* Finding a cycle: spanning_tree_edge(Graph G) {
* Adjacency matrix ~ n =0;
e O(V2 while n < |V]-1:
« Adi () ; pick an edge (i,j)
Jacency list if(addition of (i,j) does not form a
*O(V+E) cycle in the output)
e Overall: add(i, j) to output
* Adjacency matrix n++
- 0(V3)
* Adjacency list Faster method with Disjoint sets

* O(V(V + E)) = O(VE) (if E>>V) Next topic

Spanning Trees in Weighted
Graphs

Spanning trees: Weighted graphs

The spanning-tree problem
* Add nodes to partial tree
* Add acyclic edges

Minimum-cost-spanning-tree problem

*Given a connected, weighted, undirected graph, find a
spanning tree of minimum weight
* The above approaches suffice with minor changes:

* Add nodes to partial tree approach: Prim’s Algorithm

* Add acyclic edges approach : Kruskal’s algorithm

Prim’s Algorithm
* Randomly select a root node, initialize a single-node tree

e Grow the tree from a root node

* Repeatedly add one node outside the tree into the tree
until all the nodes are in the tree

* Add a new edge: one node in the tree, the other outside
the tree such that the added edge has the minimum
weight

Prim’'s Algorithm

Prim’'s Algorithm

Prim’s Algorithm

Given: a connected undirected weight graph

Initialize fringe to have a root node with costToTree = 0

all nodes are unvisited;

Repeat until all nodes are visited {
Choose from fringe the unvisited node (n*) with minimum costToTree;

Add the corresponding edge to the spanning tree, set n* as visited

for each (edge (n* n’) with one end-node n*) {
if (n” is not visited) then add <n’, (n*,n’), cost(n*,n")> into the fringe;
}
}

33

Example: First iteration

Fringe: <I, null 0>

Spanning Tree:
Visited: |

Fringe: <|, A; 4>; <|; B; 3>) <I) CI 9>I <II EI 17>’
<l,J, 6>, <I, G, 8

Example: Second iteration

Fringe: <l, A, 4>, <I, B, G
3>,<I,C, 9> <I,E, 17>,
<l,J, 6>, <I, G, 8>

Spanning Tree: <I,B>
Visited: |, B

Fringe: <l, A, 4>, <, B;3>;<I1,C, 9>, <I, E, 17>,
<l,J, 6> <Il, G, 8, <B, A, 7> <B, C, 5>, <B, G, 6>

Example: Third iteration

Fringe: <I, A, 4>
<l,C, 9> <I| E, 17>,
<l,J, 6> <I, G, 8>,
<B, A, 7>,<B, C, 5>,
<B, G, 6>

Spanning Tree: <I,B><I, A>
Visited: |, B, A

Fringe: <b-A4>, <I, C, 9>,<I, E, 17>,

<l,J, 6>, <I, G, 8,<B, A, 7> <B, C, 5>, <B, G, 6>,
<A, H, 10>

Next Lecture

Spanning Trees (cont.)

