
COMP261
Algorithms and Data Structures

2024 Tri 1

Jyoti Sahni
jyoti.sahni@ecs.vuw.ac.nz

Office Hours (COMP261): AM414, Thursday 10:00 – 12:00

mailto:jyoti.sahni@ecs.vuw.ac.nz

Spanning Trees

Given a connected, undirected, weighted graph, a
spanning tree is a subgraph that contains all the nodes but
has no cycles (is a tree)

A spanning tree is defined only for a connected graph,
because a tree is always connected, and in a disconnected
graph of n vertices we cannot find a connected subgraph
with n vertices

Spanning Tree

•Many applications
•Design of networks (road, telecommunication,

transportation etc.) - cover the network with minimum
cost
•Object detection, handwriting recognition
•Cluster analysis (e.g. gene expression clustering)

Muddy City Problem
•Consider a city with no
concrete roads.

•Getting around the city is

•difficult especially after
rainstorms

• We need to identify the
streets that must be paved,
but we don’t want to spend
more money than necessary.

*The number of paving stones between each
house represents the cost of paving that route

The best route is that connects all the houses,
but uses as few paving stones as possible

Image source: https://personal.utdallas.edu/~besp/teaching/mst-applications.pdf

•Every connected graph has at least one spanning tree.

•Given a connected graph of n vertices, what would be
the number of edges in the corresponding spanning tree ?

•Theorem: Any tree with n vertices has n − 1 edges.
•Proof (By induction)

Some points to note

Some points to note

In an unweighted graph, we don’t care about which edges
are there in our tree : as long as the tree contains all the
edges.

• In weighted graph, in most of the cases we do require to
consider the weights – as we want to minimize the cost
involved

•Minimum Cost Spanning tree

Finding Unweighted Spanning
Trees
Different approaches to the spanning-tree problem:

•Do a graph traversal (e.g., depth-first search, but any
traversal will do) and keep track of edges that form a tree

OR

•Iterate through edges and add to output any edge that
doesn’t create a cycle

Spanning Tree via DFS

DFS reaches each node. We add one edge to connect an
unvisited node to the already visited nodes. Order affects
result.

𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔_𝑡𝑟𝑒𝑒_𝑑𝑓𝑠(𝐺𝑟𝑎𝑝ℎ 𝐺) {
for each node i: i.marked = false
for some node i: f(i)

}

𝑓(𝑁𝑜𝑑𝑒 𝑖) {
i.marked = true
for each j adjacent to i:

if(!j.marked) {
add(i,j) to output
f(j) // DFS

}
}

DFS calls

f(1)
2

4

3
1

5

7

6

Output:

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

Example

Output: (1,2)

Example

DFS calls

f(1)

f(2)

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Output: (1,2), (2,3)

DFS calls

f(1)

f(2)

f(3)

Example

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Output: (1,2), (2,3), (3,4)

DFS calls

f(1)

f(2)

f(3)

f(4)

Example

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Output: (1,2), (2,3), (3,4), (4,5)

DFS calls

f(1)

f(2)

f(3)

f(4)

f(5)

Example

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Output: (1,2), (2,3), (3,4), (4,5),

(5,6)

DFS calls

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

Example

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Output: (1,2), (2,3), (3,4), (4,5),

(5,6), (5,7)

DFS calls

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

Example

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Output: (1,2), (2,3), (3,4), (4,5),

(5,6), (5,7)

DFS calls

f(1)

f(2)

f(3)

f(4)

f(5)

f(6)

f(7)

Example

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Output: (1,2), (2,3), (3,4), (4,5),

(5,6), (5,7)

Example

1

2

3

4

5

6

7

2, 5, 6

1, 3, 7

2, 4

3, 5, 7

1, 4, 6, 7

1, 5

2, 4, 5

2

4

3
1

5

7

6

Another approach

Iterate through edges; output any edge that does not
create a cycle

Consider edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

2

4

3
1

5

7

6

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)

2

4

3
1

5

7

6

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

2

4

3
1

5

7

6

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6)

2

4

3
1

5

7

6

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),

(5,7)

2

4

3
1

5

7

6

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),

(5,7), (1,5)

2

4

3
1

5

7

6

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),

(5,7), (1,5)

2

4

3
1

5

7

6

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),

(5,7), (1,5)

2

4

3
1

5

7

6

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),

(5,7), (1,5), (2,3)

2

4

3
1

5

7

6

Stop once we have |V|-1
edges

Complexity
• Spanning tree via DFS: Adjacency matrix O V2 ,

Adjacency list: O(V + E)

• Iterating through edges: Involves deciding if addition of an edge
could form a cycle.
• Finding a cycle:
• Adjacency matrix

•O V2

• Adjacency list
•O(V + E)

•Overall:
• Adjacency matrix

•O V3

• Adjacency list

•O V V + E ≈ O(VE) (if E>> V)

𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔_𝑡𝑟𝑒𝑒_𝑒𝑑𝑔𝑒(𝐺𝑟𝑎𝑝ℎ 𝐺) {
n =0;
while n < |V|-1 :

pick an edge (i,j)
if(addition of (i,j) does not form a

cycle in the output)
add(i, j) to output

n++

Faster method with Disjoint sets
Next topic

Spanning Trees in Weighted
Graphs

Spanning trees: Weighted graphs

The spanning-tree problem

•Add nodes to partial tree

•Add acyclic edges

Minimum-cost-spanning-tree problem

•Given a connected, weighted, undirected graph, find a
spanning tree of minimum weight

•The above approaches suffice with minor changes:
•Add nodes to partial tree approach: Prim’s Algorithm
•Add acyclic edges approach : Kruskal’s algorithm

Prim’s Algorithm

•Randomly select a root node, initialize a single-node tree

•Grow the tree from a root node

•Repeatedly add one node outside the tree into the tree
until all the nodes are in the tree

•Add a new edge: one node in the tree, the other outside
the tree such that the added edge has the minimum
weight

Prim’s Algorithm

A

B

C

E

D

I

H

G

J

F

5 1

3

7

25

9

6

2

3
23

1

18

417

10
8

410

14

6

Prim’s Algorithm

Prim’s Algorithm

Given: a connected undirected weight graph

33

Initialize fringe to have a root node with costToTree = 0

all nodes are unvisited;

Repeat until all nodes are visited {
Choose from fringe the unvisited node (n*) with minimum costToTree;

Add the corresponding edge to the spanning tree, set n* as visited

for each (edge (n*, n’) with one end-node n*) {
if (n’ is not visited) then add <n’, (n*,n’), cost(n*,n’)> into the fringe;

}
}

Fringe: <I, null 0>

Example: First iteration

Fringe: <I, A, 4>, <I, B, 3>, <I, C, 9>, <I, E, 17>,
<I, J, 6>, <I, G, 8>

Spanning Tree:
Visited: I

A

B

C

E

D

I

H

G

J

F

5 1

3

7

25

9

6

2

3
23

1

18

417

10
8

410

14

6

Example: Second iteration

Fringe: <I, A, 4>, <I, B, 3>, <I, C, 9>, <I, E, 17>,
<I, J, 6>, <I, G, 8>, <B, A, 7>, <B, C, 5>, <B, G, 6>

Spanning Tree: <I,B>
Visited: I, B

A

B

C

E

D

I

H

G

J

F

5 1

3

7

25

9

6

2

3
23

1

18

417

10
8

410

14

6Fringe: <I, A, 4>, <I, B,
3>, <I, C, 9>, <I, E, 17>,
<I, J, 6>, <I, G, 8>

A

B

C

E

D

I

H

G

J

F

5 1

3

7

25

9

6

2

3
23

1

18

417

10
8

410

14

6

Example: Third iteration

Fringe: <I, A, 4>, <I, C, 9>, <I, E, 17>,
<I, J, 6>, <I, G, 8>, <B, A, 7>, <B, C, 5>, <B, G, 6>,
<A, H, 10>

Spanning Tree: <I,B> <I, A>
Visited: I, B, A

Fringe: <I, A, 4>
<I, C, 9>, <I, E, 17>,
<I, J, 6>, <I, G, 8>,
<B, A, 7>, <B, C, 5>,
<B, G, 6>

Next Lecture

Spanning Trees (cont.)

