
COMP261 Algorithms and Data Structures

Data Compression 2:

Lempel-Ziv Coding

Fang-Lue Zhang

some Huffman coding addenda…
• http://www.csfieldguide.org.nz/en/interactives/huffman-tree/index.html
• https://people.ok.ubc.ca/ylucet/DS/Huffman.html
for fun: each verse has [a-z] except e (& check out “lipogram, Gadsby”)
Bold Nassan quits his caravan,
A hazy mountain grot to scan;
Climbs jaggy rocks to find his way,
Doth tax his sight, but far doth stray.

Not work of man, nor sport of child
Finds Nassan on this mazy wild;
Lax grow his joints, limbs toil in vain—
Poor wight! why didst thou quit that plain?

Vainly for succour Nassan calls;
Know, Zillah, that thy Nassan falls;
But prowling wolf and fox may joy
To quarry on thy Arab boy.

2

http://www.csfieldguide.org.nz/en/interactives/huffman-tree/index.html
https://people.ok.ubc.ca/ylucet/DS/Huffman.html

Data/Text Compression

• Reducing the memory required to store some information.

• Huffman coding minimised the number of bits for each symbol.

• Perhaps we could do better by looking at sequences of symbols?

Original text/image/sound compress compressed
text/image/sound

3

Shannon, and information theory

• Claude Shannon
• “…kept a box on his desk called the "Ultimate Machine". Otherwise featureless, the box

possessed a single switch on its side. When the switch was flipped, the lid of the box opened
and a mechanical hand reached out, flipped off the switch, then retracted back inside the box.”

4

“This duality can be pursued further and is
related to a duality between past and future
and the notions of control and knowledge.
Thus we may have knowledge of the past
but cannot control it; we may control the
future but have no knowledge of it.”

https://www.wikiwand.com/en/Claude_Shannon

predictable structure à shorter codes?

• Shannon’s source coding theorem: the optimal code length for a symbol is –
log2P, where P is the probability of the input symbol. The average of this, over
the whole alphabet, is called the entropy, H.
– If P was “flat” (all letters equally likely), H=4.75 bits, for English
– With the actual P, it drops a bit to 4.2 bits/char. You can try it here.
– but that ignores the fact it’s a sequence.

Fr xmpl, y cn prbbly gss wht ths sntnc sys, vn wth ll f th vwls mssng. Tht ndcts tht th
nfrmtn cntnt cn b xtrctd frm th rmnng smbls.

Aoccdrnig to rscheearch at Cmabirgde Uinervtisy, it deosn’t mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the
rghit pclae. The rset can be a ttoal mses and you can sitll raed it wouthit porbelm.
Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as
a wlohe. Amzanig huh?

5

http://www.shannonentropy.netmark.pl/

predictable structure à shorter codes
• Digrams/bigrams and trigrams? In English the most common are:

Digrams Trigrams
EN ENT
RE ION
ER AND
NT ING
TH IVE
ON TIO
IN FOR
TR OUR
AN THI
OR ONE

• Entropy if you use trigrams drops to about 2.6 bits/char
• So what’s the entropy if you go to n-grams, and let n get “big”?

– it ends up somewhere between 0.6 and 1.3 bits/char !!
– can we design a code to reach this? how? (next lecture!)

6

the
“Shannon
limit”

Different approach: Run Length Encoding

• If data contains lots of runs of repeated symbols, it may be efficient
to store as (count, symbol) pairs.

• E.g. #1:
could use two bytes for each character:
1 byte for the count (up to 256), and 1 byte for the character

aaabbaaaaaaapaa → 3a2b6a1p2a

• E.g. #2:
could use 6 bits to store black and white image data:
5 bits for the count, and 1 bit to say what is repeated
111111110000001111111111111 → 010001 001100 011011

7

Poor for: 01011101110010101010101010101….

Poor for: abcabcabbcabcabaabcabcccababcabc…

Lempel-Ziv

• Lossless compression.
• LZ77 = simple compression, using repeated patterns

– basis for many later, more sophisticated compression schemes.

• Key idea:
– If you find a repeated pattern, replace later ones by a link to the first:

a contrived text containing riveting contrast

a contrived text[15,5] ain[2,2] g [22,4] t[9,4][35,5] ast

(Note: This ignores patterns of length 1 – they are included later.)

8

Lempel-Ziv

How can we distinguish pointers from ordinary characters?

Store text as triples:
§ [offset,length,symbol] where symbol is just the next symbol.
§ so if there’s no repetition to reference: just [0,0,symbol]

To limit size of offset and length, we:
– limit the size of the window to left of current position in which we look

for a match, and
– limit the distance ahead we look in the input for a match.

9

Lempel-Ziv Example
a contrived text containing riveting contrasting …

[0,0,a] [0,0,] [0,0,c] [0,0,o] [0,0,n] [0,0,t]
[0,0,r] [0,0,i] [0,0,v] [0,0,e] [0,0,d]

à à à a c o n t r i v e d

[10,1,t] à _ t
[4,1,x] à e x
[3,1,] à t _
[15,4,a] à cont a
[15,1,n] à i n
[2,2,g] à in g
[11,1,r] à _ r
[22,3,t] à ive t
[9,4,c] à ing_ c
[35,4,a] à ontr a

10

no repeats, so all at
just [0,0,symbol]
so far

notice that
including matches
of length 1 changes
the encoding

This takes 69 bytes to store 48 characters
- assuming that offset, length and
character each take one byte.
Would improve with longer text.

Lempel-Ziv 77
• skljsadf lkjhwep oury d dmsmesjkh fjdhfjdfjdpppdjkhf sdjkh fjdhfjds fjksdh kjjjfiuiwe dsd fdsf sdsa

• Outputs a string of tuples:
– [offset, length, nextCharacter] or [0,0,character]

• Moves a cursor through the text one character at a time
– cursor points at the next character to be encoded.

• Drags a "sliding window" behind the cursor.
– searches for matches only in this sliding window

• Expands a lookahead buffer from the cursor
– this is the string it tries to match in the sliding window.

• Searches for a match for the longest possible lookahead
– stops expanding when there isn't a match

• Insert triple of match point, length, and next character

11

Lempel-Ziv 77 – high level

cursor ¬ 0; windowSize ¬ 100 // some suitable size
while cursor < text.length-1:

look for longest prefix of text[cursor .. text.length-1]
in text[max(cursor-windowSize,0) .. cursor]

if found, add [offset,length,text[cursor+length]] to output
else add [0, 0, text[cursor]] to output
advance cursor by length+1

We can use various approaches to find that longest-matching-substring:
• Brute force: Look for longest match at each position in window
• KMP, or Boyer Moore…

12

Lempel-Ziv 77 – coding, a first attempt
cursor ¬ 0
windowSize ¬ 100 // some suitable size
while cursor < text.size

length ¬ 1
prevMatch ¬ 0
loop

match ¬ stringMatch(text[cursor.. cursor+length],
text[((cursor<windowSize)?0:cursor-windowSize) .. cursor])

if match succeeded then:
prevMatch ¬ match
length ¬ length + 1

else:
output([a value for prevMatch,

length - 1, text[cursor+length - 1]])
cursor ¬ cursor + length
break

• This looks for an occurrence of text[cursor..cursor+length] in text[start..cursor-1], for increasing values of
length, until none is found, then outputs a triple.

• This is pretty wasteful – we know there is no match before prevMatch, so there’s no point looking there
again! Probably better starting from prevMatch?

• Or (maybe) find longest match starting at each position in window and record longest?

However:
(cursor – windowSize)
should never point before 0,

and (cursor + length) mustn't
go past end of text

13

Decompression
a_contrived_text_containing_riveting_contrasting_t

è
[0,0,a][0,0,_][0,0,c][0,0,o][0,0,n][0,0,t][0,0,r][0,0,i][0,0,v][0,0,e][0,0,d][10,1,t]
[4,1,x][3,1,_][15,4,a][15,1,n][2,2,g][11,1,r][22,3,t][9,4,c][35,4,a][0,0,s][12,5,t]

• so we can just decode each tuple in turn:

cursor ¬ 0
for each tuple

if [0, 0, ch] : output[cursor++] ¬ ch
elif [offset, length, ch] :

for j = 0 to length-1
output [cursor++] ¬ output[cursor-offset]

output[cursor++] ¬ ch

14

Lempel Ziv – note that…

• Encoding is expensive, decoding is cheap

• Many improvements/variants have been proposed

– See Wikipedia and other online summaries

• e.g.: could use two types of output value:

– (offset, length) pair for repeated sequence,

– character for non-repeat

– How can we distinguish them?

• Can be used in conjunction with Huffman coding.

15

We need a string-searching algorithm

• Knuth-Morris-Pratt visualization (also Huffman, many others):
https://people.ok.ubc.ca/ylucet/DS/Algorithms.html

• If you’re interested in Boyer-Moore: https://dwnusbaum.github.io/boyer-moore-
demo/

• The “Moore” in Boyer-Moore has a nice interactive demos of both Knuth-
Morris-Pratt and Boyer-Moore algorithms:
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/

16

https://people.ok.ubc.ca/ylucet/DS/Algorithms.html
https://dwnusbaum.github.io/boyer-moore-demo/
https://dwnusbaum.github.io/boyer-moore-demo/
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/

