COMP261 Algorithms and Data Structures

Data Compression 2:

Lempel-Ziv Coding

Fang-Lue Zhang

some Huffman coding addenda...

. http://www.csfieldquide.orq.nz/en/interactives/huffman-tre_e/index.html
* https://people.ok.ubc.ca/ylucet/DS/Huffman.html S

for fun: each verse has [a-z] except e (& check out “lipogram, Gadsby”)
Bold Nassan quits his caravan,

A hazy mountain grot to scan;
Climbs jaggy rocks to find his way,

U
Doth tax his sight, but far doth stray. ﬁ ﬁ ﬁgb j

Not work of man, nor sport of child

Finds Nassan on this mazy wild;

Lax grow his joints, limbs toil in vain—
Poor wight! why didst thou quit that plain?

50,000
WORD NOVEI

Vainly for succour Nassan calls;
Know, Zillah, that thy Nassan falls;
But prowling wolf and fox may joy
To quarry on thy Arab boy.

=

.
——— {1 S
=

e

m
~— (52 1 A
—
— (L
=

=
o
3

http://www.csfieldguide.org.nz/en/interactives/huffman-tree/index.html
https://people.ok.ubc.ca/ylucet/DS/Huffman.html

Data/Text Compression

« Reducing the memory required to store some information.

Original text/image/sound %Ccompress H ’?eoxT/ie:leasg’;See/gound

« Huffman coding minimised the number of bits for each symbol.

« Perhaps we could do better by looking at sequences of symbols?

Shannon, and information theory

« Claude Shannon

« “...kept a box on his desk called the "Ultimate Machine". Otherwise featureless, the box
possessed a single switch on its side. When the switch was flipped, the lid of the box opened
and a mechanical hand reached out, flipped off the switch, then retracted back inside the box.”

https://www.wikiwand.com/en/Claude_Shannon

predictable structure - shorter codes?

« Shannon’s source coding theorem: the optimal code length for a symbol is —
log,P, where P is the probability of the input symbol. The average of this, over
the whole alphabet, is called the entropy, H.

— If P was “flat” (all letters equally likely), H=4.75 bits, for English
— With the actual P, it drops a bit to 4.2 bits/char. You can try it here.
— but that ignores the fact it's a sequence.

Fr xmpl, y cn prbbly gss wht ths sntnc sys, vn wth Il f th vwls mssng. Tht ndcts tht th
nfrmtn cntnt cn b xtrctd frm th rmnng smbls.

Aoccdrnig to rscheearch at Cmabirgde Uinervtisy, it deosn’t mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the
rghit pclae. The rset can be a ttoal mses and you can sitll raed it wouthit porbelm.

Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as
a wlohe. Amzanig huh?

http://www.shannonentropy.netmark.pl/

predictable structure - shorter codes

« Digrams/bigrams and trigrams? In English the most common are:
Digrams Trigrams

EN ENT
RE ION
ER AND
NT ING
TH IVE
ON TIO
IN FOR
TR OUR
AN THI
OR ONE

« Entropy if you use trigrams drops to about 2.6 bits/char

* So what's the entropy if you go to n-grams, and let n get “big™?
— it ends up somewhere between 0.6 and 1.3 bits/char !
— can we design a code to reach this? how? (next lecture!)

Different approach: Run Length Encoding

* |If data contains lots of runs of repeated symbols, it may be efficient
to store as (count, symbol) pairs.

- E.g. #1:
could use two bytes for each character:
1 byte for the count (up to 256), and 1 byte for the
aaabbaaaaaaapaa — 3a2b6alp?2

- E.g. #2:
could use 6 bits to store black and white image data:

5 bits for the count, and 1 bit to say what is
111111110000001111111111111 — 010001 001100 01101

Lempel-Ziv

Lossless compression.
LZ77 = simple compression, using repeated patterns
— basis for many later, more sophisticated compression schemes.

Key idea:
— If you find a repeated pattern, replace later ones by a link to the first:

a contrived text[715,5] ain[2,2] g [22,4] t[9,4][35,5] ast

(Note: This ignores patterns of length 1 — they are included later.)

Lempel-Ziv

How can we distinguish pointers from ordinary characters?

Store text as triples:
= [offset,length,symbol] Where symbol is just the next symbol.

= so if there’s no repetition to reference: just [2,0, symbol]

To limit size of offset and 1ength, we:

— limit the size of the window to left of current position in which we look
for a match, and

— limit the distance ahead we look in the input for a match.

Lempel-Ziv Example

a_contrived_text containing_riveting_contrasting ..

[0,0,a] [0,0,_]
[0,0,r] [0,0,1]

2> 2>—>2>a _contrived

[10,1,1t]
(4,1, x]

3,1,]

[15,4,a]
[15,1,n]
[2,2,8]
[11,1,r]
[22,3,1t]
9,4,c]
[35,4,a]

[0,0,c]
[0,0,V]

N 2020\ 20\ 28 20\ 20\ 20\ 2\ 2

t
X

~+ O |

cont a
in

in g
_r
ive t
ing c
ontr a

[0,0,0]
[0,0,¢e]

[e,6,n] [0,0,t]
[0,0,d]

This takes 69 bytes to store 48 characters
- assuming that offset, length and
character each take one byte.

Would improve with longer text.

10

Lempel-Ziv 77

skljsadf lkjhwep oury d dmsmesjkh f£jdhfjdfjdpppdjkhf sdjkh £jdhfjds fjksdh kjjjfiuiwe dsd £dsf sdsa

|

— [offset, length, nextCharacter] or [0,0,character]

« Outputs a string of tuples:

* Moves a cursor through the text one character at a time
— cursor points at the next character to be encoded.
* Drags a "sliding window" behind the cursor.
— searches for matches only in this sliding window
« Expands a lookahead buffer from the cursor
— this is the string it tries to match in the sliding window.
« Searches for a match for the longest possible lookahead
— stops expanding when there isn't a match

« Insert triple of match point, length, and next character

Lempel-Ziv 77 — high level

cursor <« 0; windowSize « 100 // some suitable size
while cursor < text.length-1:
look for longest prefix of text[cursor .. text.length-1]
in text[max(cursor-windowSize,@) .. cursor]
if found, add [offset,length,text[cursor+length]] to output
else add [@, 0, text[cursor]] to output
advance cursor by length+l

We can use various approaches to find that longest-matching-substring:
« Brute force: Look for longest match at each position in window
« KMP, or Boyer Moore...

Lempel-Ziv 77 — coding, a first attempt

cursor <« 0

windowSize <« 100 // some suitable size / However: I
while cursor < text.size (cursor — windowSize)
1 should never point before 0,
ength « 1
prevMatch « © and (cursor + length) mustn't
loop \gg@d of text J
match « stringMatch(text[cursor.. cursor+length],
text[((cursor<windowSize)?0:cursor-windowSize) .. cursor])

if match succeeded then:
prevMatch <« match
length <« length + 1
else:
output([a value for prevMatch,
length - 1, text[cursor+length - 1]])
cursor <« cursor + length
break

» This looks for an occurrence of text[cursor..cursor+length] in text[start..cursor-1], for increasing values of
length, until none is found, then outputs a triple.

» This is pretty wasteful — we know there is no match before prevMatch, so there’s no point looking there
again! Probably better starting from prevMatch?

Or (maybe) find longest match starting at each position in window and record longest?

Decompression

a contrived text contalning riveting contrasting t

->
[0,0,a][0,0,_][0,0,c][0,0,0][0,0,n][0,0,t][0,0,r][0,0,i][0,0,v][0,0,e][0,0,d][10,1,1]
[4,1,x][3,1,_][15,4,a][15,1,n][2,2,g][11,1,r][22,3,t][9,4,c][35,4,a][0,0,s][12,5,t]

* SO we can just decode each tuple in turn:

cursor <« 0
for each tuple
if [0, @, ch] : output[cursor++] <« ch
elif [offset, length, ch]
for j = 0 to length-1
output [cursor++] <« output[cursor-offset]
output[cursor++] <« ch

Lempel Ziv — note that...

* Encoding is expensive, decoding is cheap
* Many improvements/variants have been proposed

— See Wikipedia and other online summaries

e.g.: could use two types of output value:
— (offset, length) pair for repeated sequence,
— character for non-repeat

— How can we distinguish them??

Can be used in conjunction with Huffman coding.

We need a string-searching algorithm

* Knuth-Morris-Pratt visualization (also Huffman, many others):
https://people.ok.ubc.calylucet/DS/Algorithms.html

 If you're interested in Boyer-Moore: htips://dwnusbaum.github.io/boyer-moore-

demo/

* The “Moore” in Boyer-Moore has a nice interactive demos of both Knuth-
Morris-Pratt and Boyer-Moore algorithms:
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/

16

https://people.ok.ubc.ca/ylucet/DS/Algorithms.html
https://dwnusbaum.github.io/boyer-moore-demo/
https://dwnusbaum.github.io/boyer-moore-demo/
http://www.cs.utexas.edu/users/moore/best-ideas/string-searching/

