19/03/2024

COMP261 #6

» Use integers 0..n-1 to represent nodes
» Use an array to represent info about nodes

private Node[] nodes;
Als]c]p[e[F[cH]ITV]

* Use a 2D matrix to represent the graph
private Edge[][] edges;

* Number of rows and columns = number of nodes

0 5
* M;; = 1 if there is an edge from node /tonode / 1 [5 3 7
* M;; = 0 (blank) otherwise 2 3 1
3 1 3
4 3| |4
« What about edges with labels 5 2l s 2 object
(lengths/weights/capacities/etc)? 6| |7 5 : 6|3 471
7
8|2(6|7 9 3 6
« Cannot deal with multi-graphs. o olof [4]4]7]6

© Peter Andreae and Xiaoying Gao

19/03/2024

COMP261 #9

Adjacency List

» Use integers 0..n-1 to represent nodes,

and array to represent info about nodes:
private Node[] nodes;

» Use an array of arrays/lists to represent the graph
private int[][] neighbours; or

private List<Integer>[] neighbours;

oA o[H{1l7[8]
1B 1|11{0[2]6][8]
« What about edge information? 2|C 2|11[3[819]
Lists could store edge objects containi - s
ists could store edge objects containing B L5 T5Ts
* nodes at each end 5[F s[4+{4]6]9
- length/capacity/labels on edges 6|G 6| T11[5[7[8]9]
. . 7| H 7|T10]6([9
private List<Edge>[] edges; s s|+HHo[1]2]4]6]9]
o[J o[{2[3[5]6][7]8]

19/03/2024

COMP261 # 10

Time Complexity of Adjacency List,

and E directed edges, assume N < E < 2N?
* Row i: a list of outgoing node neighbours of node /

* Find all nodes

* Find all edges

o[A o[4{1]7]8
1B 1{+{0J2]6]8

« Find all edges of a node 2| cC 2| +H1]3]8]9
|-

. . 4| E 411315

* Find all node neighbours s [F 52 2169
6|G 6| +H1[5[7[8]9]

» Check if there is an edge between two nodes 7| H 7|T1016][9]
8|1 8| 1+10l1[2[4]6[9]
9| J 9| +{2]3]5]6]7]8]

© Peter Andreae and Xiaoying Gao

19/03/2024

COMP261 # 12

Adjacency List, Directed Graph

Same data structure

» Use integers 0..n-1 to represent nodes, and

array to represent info about nodes:
private Node[] nodes;

» Use an array of arrays/lists to represent the graph

private int[][] outNeighbours; or
private List<Integer>[] outNeighbours;

private List<Edge>[] outEdges; 0 A o|gAl7]8]
1B 14126
2| cC 2[4+{3]9
3D JEmEE
4[E 4 [45]
5| F 5| 1+{6]9
6|G 6| 1718
7| H T T
8| | 8| T11[2[4]9]
o1 J 9| +16][7

© Peter Andreae and Xiaoying Gao

19/03/2024

COMP261 # 13

Time Complexity of Adjacency List, Directed

* Assume simple graph: at most one edge between
each pair of nodes, with N nodes and E directed
edges, assume N < E < 2N?

* If graph has a maximum in-degree and/or out-
degree: A;,, Aoy, A =max(A,, Ajut)
* (maximum number of neighbours)

_ oA o[H1]7]8]
* Find all nodes 1B 111216
- Find all edges 2|C 2| 11319]

s [0 s [4-{aTs]

* Find all outgoing edges of a node 4| E 4| 115

. . . 5(F 5T 6|9
* Find all incoming edges of a node sl G o[1-{718
- Find all outgoing node neighbours 7{H T T

going g 8| I g|r11[2[4]9]

* Find all incoming node neighbours 9| J 9|416]7]
* Check if there is an edge between two nodes i*" list has the outgoing neighbours of node i

© Peter Andreae and Xiaoying Gao

19/03/2024

Time Complexity of Adjacency List, Directed

* Assume simple graph: at most one edge between

each pair of nodes, with N nodes and E directed
edges, assume N < E < 2N?

* If graph has a maximum in-degree and/or out-
degree: A;,, Aoy, A =max(A,, Ajut)
* (maximum number of neighbours)

* Find all nodes O(N)

*Find all edges O(E)

* Find all outgoing edges of a node O(A)
* Find all incoming edges of a node O(E)
« Find all outgoing node neighbours O(A)
* Find all incoming node neighbours O(E)

» Check if there is an edge between two nodes O(E)

COMP261 # 14

C|=|ITI@|MMOoO|O|m|>

0
1
2
3
4
5
6
7
8
9

N nnnnnnn

© 0O N o g bk~ W N = O

it list has the outgoing neighbours of node i

© Peter Andreae and Xiaoying Gao

19/03/2024

COMP261 # 15

Adjacency List for Directed Graph

 Not efficient in finding incoming edges or neighbours of a node
* Solution: store two adjacency lists
private List<Edge>[] outEdges;
private List<Edge>[] inEdges;

© Peter Andreae and Xiaoying Gao

19/03/2024

COMP261 # 16

Time Complexity of Adjacency List

» Worse-case complexity of finding edge/node neighbours is O(N), if the graph is fully
connected.

* In practice, this complexity is much smaller
* Node degree “deg(node)”: the number of outgoing (incoming) edges of a node

» Max degree of a graph (A = max{deg(node)}): the maximal number of neighbours
of the nodes in the graph

 E.g.: an intersection connects at most four streets, A = 4

« Complexity of finding all outgoing/incoming neighbours
«0(A) < O(N)
* Almost 0(1)

19/03/2024

Time Complexity Comparison

« Assume simple graph: at most one edge between each pair of nodes,

with N nodes and E directed edges, max degree of graph: A;,, = Ay = A

* Adjacency matrix: each entry stores an edge object

* Adjacency list: each node has list of edge objects
or two lists, (outgoing and incoming) for directed graph

Adjacency Matrix Adjacency List Edge List
Find all nodes O(N) O(N) 0(E)
Find all edges O(N?) 0(E) 0(E)
Find all outgoing edges of a node o(N) 0(4) 0(E)
Find all incoming edges of a node O(N) 0(h) 0(E)
Find all outgoing node neighbours of a node O(N) 0(4h) 0(E)
Find all incoming node neighbours of a node O(N) 0(4a) O(E)
Check if there is an edge from u to v o) 0(4) 0(E)
Get next shortest edge O(N?) 0(E) 0(log(E))

» Adjacency list has better time unless checking edge from uto v is important.

© Peter And

COMP261 #17

reae and Xiaoying Gao

19/03/2024

COMP261 #18

Edge List:

* Array of Edges

0 2 3 456 7 8 9 101 1213 14 1516 17 18 19
to |0|0|O0O|1|1|[2[2|2|3|3)4|5|5|5[6|7|7|8]|9]|9
from |3 712|0]|6(4([5]9|3|1[7]0)|5|4(8|1]|]2|0(5

length |25|31|19(82|43(74(86(21(10|33|17|66|47|65(53(68(46(22| 3 |92

* Slow for almost everything,
except finding the next shortest edge:

0 2 3 456 7 8 9 10 1 1213 14 1516 17 18 19

to [9(3]4|0(2|8|0(0|3[1[7]|5|6[5]|565|7[2]|1]2(9
from [0[(9(1[7|5(2|3|4|3|0|1|0|4(|5|7|8|6]|2]|4]|5
length | 3 [10(17]|19|21(22]|25|31(33|43|46|47|53|65(66|68|74(82]|86|92

© Peter Andreae and Xiaoying Gao

10

19/03/2024

COMP261 # 19
Object Oriented representation
* Forget the arrays. * Big linked structure of Objects
* Don't use integers to represent nodes. * Collections may be Lists or Sets
- Graph has a Collection of Nodes: * Nodes contain collection of Edges
private Collection<Node> allNodes; private Collection<Edge> edges;
And maybe a Collection of Edges: or two if directed graph:
private Collection<Edge> allEdges; private Collection<Edge> outgoing;
private Collection<Edge> incoming;
- Edges contain two Nodes
Graph could contain a HashMap from Pairs of pr'%vate Node from;
Nodes to Edges: private Node to;
HashMap<Pair<Node,Node>,Edge> allEdges;

11

19/03/2024

A Linked Graph Structure.

Nodes: [| |

COMP261 # 20

and Xiaoying Gao

12

19/03/2024

A Linked Graph Structure.

Nodes: [| |

No information about the edges: neighbours are the nodes

COMP261 # 21

and Xiaoying Gao

13

19/03/2024

A Linked Graph Structure.

Nodes: [| | \

Undirected

COMP261 # 22

Edge objects with two nodes,
node neighbours are edges

14

19/03/2024

COMP261 # 23

A Linked Graph Structure.

Nodes: [| |\ Directed Edge objects with two nodes,
nodes have out-neighbours
and in-neighbours

15

19/03/2024

A Linked Graph Structure.

k]

Can also have a collection
of all Edge objects

16

19/03/2024

Wellington Public Transport Map

* Complex Graph structure
« directed graph
* multi-graph
* lots of information on nodes and edges
* multiple tasks.
 Additional structure (“lines"), kinds of edges.

» Assignment:
* build the graph structure edges and neighbours
* Find shortest paths
* Find strongly connected subgraphs
* Find "articulation points"

COMP261 # 25

© Peter Andreae and Xiaoying Gao

17

