23/03/2024

. COMP261 # 34
Admin

 Assign 2 is out
* Tutorial:

» Graph representation

 Construct Path by backpointers
* Path finding

« Term test marking is finished, hopefully will be handed back tomorrow.

© Peter Andreae and Xiaoying Gao

23/03/2024

Finding a path:

» Suppose we want to find a path from start to a goal?

« Assume graph is of physical places,
* each node has a location.
« each edge has the actual path length

* Which order should we choose?
* DFS?
* BFS?
« ?7?

COMP261 # 35

© Peter Andreae and Xiaoying Gao

23/03/2024

lterative traversal: finding a path: version 1

FindPath(start, goal):

fringe «— PriorityQueue of nodes
put start on the fringe.
while fringe is not empty:
node < remove from fringe
if node is not visited:
visit node
if node=goal:
return the path to node
for each neighbour of node:
if neighbour is not visited:
add neighbour to fringe

Problems:
Will it find the shortest path?
How do we return the path?

Ordered by shortest straight-line distance from node to goal

= estimate of how much further fo go.

Always removes the node on the fringe closest to the goal

How?

COMP261 # 36

© Peter Andreae and Xiaoying Gao

23/03/2024

lterative search, keeping track of the path

* When we visit a node, we need to
record how we got to it ("backpointers")

* Use a Map from node to previous node °

e But how do we know where we came
from when we take the node off the
fringe?

10

* The fringe needs to contain more than just
the node:
* the node,
* the node we came from,
. the edge we came along
* other information to help decide

COMP261 # 37

© Peter Andreae and Xiaoying Gao

23/03/2024

lterative traversal: finding a path: Storing paths.

FindPath(start, goal):

fringe <« PriorityQueue of (node, prev, edge...) Ordered by shortest node-goal distance .
backpointers < Map of nodes to previous node or Map of nodes to edges
put (start,null,null) on the fringe.

while fringe is not empty:
(node, prev, edge...) « remove from fringe
if node is not visited:
visit node

put {node, prev) into backpointers
if node=goal:

return backpointers Can reconstruct path to goal from the backpointers
for each edge out of node to a neighbour:
if neighbour is not visited:

add (neighbour, node, edge...) to fringe If edges are directed, and contain
Problems: the from-node and to-node,

A then we may only need to put the
f)
Will it find the shortest path* edge on the fringe!

© Peter Andreae and Xiaoying Gao

COMP261 # 38

23/03/2024

Paths from BackPointers

» Backpointers:

ReconstructPath(start, goal, backpointers)
path < List of nodes

Map:node—prev

COMP261 # 39

add goal to path

node « goal

while node # start
node «— backpointers.get(node)

add node to path
reverse path

ReconstructPath(start, goal, backpointers)
path < List of edges

Map:node—edge

node « goal
do
edge <« backpointers.get(node)
add edge to path
node < edge.from
until node = start

© Peter Andreae and Xiaoying Gao

23/03/2024

COMP261 # 40

How can we find the shortest path?

« Assume that edges have a length
« or some other cost (non-negative) to get "cheapest" path.

* Build up the shortest paths first
If we always choose to expand the node on the fringe that has the shortest path from the start:

—> every node we visit has a shorter path than any node we haven't visited yet.
and there can't be a shorter path to this node.

— when we visit the goal, we will have found the shortest path to the goal.

How?
- fringe (PriorityQueue) must be ordered by length of path to the node on the fringe

 Truncated version of Djikstra's algorithm
(technically, Djikstra's algorithm finds shortest paths to ALL nodes, not just to the goal)

© Peter Andreae and Xiaoying Gao

23/03/2024

Finding the Shortest Path (Djikstra)

FindShortestPath(start, goal):

fringe <« PriorityQueue of (node, edge, length-to-node) Ordered by shortest length-to-node

backpointers «— Map of nodes to edges

put (start, null, 0) on the fringe.

while fringe is not empty:
(node, edge, length-to-node) «— remove from fringe
if node is not visited:

COMP261 # 41

visit node _ _ Note: we check if a)

put (node, edge) into backpointers node is the goal when

if node=goal: we remove from the
return ReconstructPath(start, goal, backpointers) fringe, not when we add

for each edge out of node to a neighbour: STl

if neighbour is not visited:

/

length-to-neighbour < length-to-node + edge.length
add (neighbour, edge, length-to-neighbour) to fringe

© Peter Andreae and Xiaoying Gao

23/03/2024

Finding All Shortest Paths: Djikstra's Algorithm

FindShortestPaths (start, goal):
fringe «— PriorityQueue of (node, edge, length-to-node)
backpointers — Map of nodes to edges
put (start, null, 0) on the fringe.
while fringe is not empty:
(node, edge, length-to-node) <« remove from fringe
if node is not visited:
visit node

put {(node, edge) into backpointers

for each edge out of node to a neighbour:
if neighbour is not visited:

length-to-neighbour < length-to-node + edge.length
add (neighbour, edge, length-to-neighbour) to fringe
return backpointers

Ordered by shortest length-to-node

COMP261 # 42

Djikstra keeps going until all
nodes visited.
Backpointers = all shortest paths!

N

© Peter Andreae and Xiaoying Gao

23/03/2024

Example of Dijkstra’s Algorithm

Visited: @
Backpointers: <dist, node, prev>

fringe

<length, node, prev>

—

—

<a3.R8>

Sl R
Rl
< s> |

<32,88>
<168,K,D>

COMP261 # 43

© Peter Andreae and Xiaoying Gao

10

23/03/2024

COMP261 # 44

What's the cost of Dijkstra's algorithm?

If a graph has N nodes and E edges:

|dentify the most expensive line:
while fringe is not empty:
fo:r each edge out of node to a neighbour:
add (neighbour, edge, length-to-neighbour) to fringe

How many times might we do that line?
What is the cost of that line?

© Peter Andreae and Xiaoying Gao

11

23/03/2024

COMP261 # 45

Problem with Djikstra's Algorithm

* If we want all shortest paths: Djikstra is best.
» Greedy: never backtracks and every iteration adds a path to the answer

* [f we want the shortest path to a goal: Djikstra is wasteful:
* spends time building paths to useless nodes, not on the way to the goal:

* Need to combine:
* length of path to here, AND
« estimate of remaining dist

* Biases the choice towards
nodes that are on the way
to the goal.

© Peter Andreae and Xiaoying Gao

12

