
23/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP261 # 34

Admin

• Assign 2 is out
• Tutorial:

• Graph representation
• Construct Path by backpointers
• Path finding

• Term test marking is finished, hopefully will be handed back tomorrow.

23/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 35

Finding a path:

• Suppose we want to find a path from start to a goal?
• Assume graph is of physical places,

• each node has a location.
• each edge has the actual path length

• Which order should we choose?
• DFS?
• BFS?
• ??

A

B

C

E

D

I

H

G

J

F

5

1
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

23/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 36

Iterative traversal: finding a path: version 1

FindPath(start, goal):
fringe ← PriorityQueue of nodes Ordered by shortest straight-line distance from node to goal
put start on the fringe. = estimate of how much further to go.
while fringe is not empty:

node ← remove from fringe Always removes the node on the fringe closest to the goal
if node is not visited:

visit node
if node=goal:

return the path to node How?
for each neighbour of node:

if neighbour is not visited:
add neighbour to fringe

Problems:
Will it find the shortest path?
How do we return the path?

23/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 37

Iterative search, keeping track of the path

• When we visit a node, we need to
record how we got to it ("backpointers")

• Use a Map from node to previous node
• But how do we know where we came

from when we take the node off the
fringe?

• The fringe needs to contain more than just
the node:
• the node,
• the node we came from,
• …. the edge we came along
• …. other information to help decide

A

B

C

E

D

I

H

G

J

F

5

8
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

23/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 38

Iterative traversal: finding a path: Storing paths.

FindPath(start, goal):
fringe ← PriorityQueue of node, prev, edge… Ordered by shortest node-goal distance .
backpointers ← Map of nodes to previous node or Map of nodes to edges
put start,null,null on the fringe.
while fringe is not empty:

node, prev, edge… ← remove from fringe
if node is not visited:

visit node
put node, prev into backpointers
if node=goal:

return backpointers Can reconstruct path to goal from the backpointers
for each edge out of node to a neighbour:

if neighbour is not visited:
add neighbour, node, edge… to fringe

Problems:
Will it find the shortest path?

If edges are directed, and contain
the from-node and to-node,
then we may only need to put the
edge on the fringe!

23/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 39

Paths from BackPointers

• Backpointers:

ReconstructPath(start, goal, backpointers)
path ← List of nodes
add goal to path
node ← goal
while node ≠ start

node ← backpointers.get(node)
add node to path

reverse path

ReconstructPath(start, goal, backpointers)
path ← List of edges
node ← goal
do

edge ← backpointers.get(node)
add edge to path
node ← edge.from

until node = start

A

B

C

E

D

I

H

G

J

F

5

8
3

7

25

9

6

2

3

23

1

18

4

17

10 8

4
10

14

6

Map:node→prev

Map:node→edge

23/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 40

How can we find the shortest path?

• Assume that edges have a length
• or some other cost (non-negative) to get "cheapest" path.

• Build up the shortest paths first
If we always choose to expand the node on the fringe that has the shortest path from the start:
 every node we visit has a shorter path than any node we haven't visited yet.

and there can't be a shorter path to this node.
 when we visit the goal, we will have found the shortest path to the goal.

How?
• fringe (PriorityQueue) must be ordered by length of path to the node on the fringe

• Truncated version of Djikstra's algorithm
(technically, Djikstra's algorithm finds shortest paths to ALL nodes, not just to the goal)

23/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 41

Finding the Shortest Path (Djikstra)

FindShortestPath(start, goal):
fringe ← PriorityQueue of node, edge, length-to-node Ordered by shortest length-to-node
backpointers ← Map of nodes to edges
put start, null, 0 on the fringe. .
while fringe is not empty:

node, edge, length-to-node ← remove from fringe
if node is not visited:

visit node
put node, edge into backpointers
if node=goal:

return ReconstructPath(start, goal, backpointers)
for each edge out of node to a neighbour:

if neighbour is not visited:
length-to-neighbour ← length-to-node + edge.length
add neighbour, edge, length-to-neighbour to fringe

Note: we check if a
node is the goal when
we remove from the
fringe, not when we add
it to the fringe.

23/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 42

Finding All Shortest Paths: Djikstra's Algorithm

FindShortestPaths (start, goal):
fringe ← PriorityQueue of node, edge, length-to-node Ordered by shortest length-to-node
backpointers ← Map of nodes to edges
put start, null, 0 on the fringe. .
while fringe is not empty:

node, edge, length-to-node ← remove from fringe
if node is not visited:

visit node
put node, edge into backpointers

for each edge out of node to a neighbour:
if neighbour is not visited:

length-to-neighbour ← length-to-node + edge.length
add neighbour, edge, length-to-neighbour to fringe

return backpointers

Djikstra keeps going until all
nodes visited.
Backpointers = all shortest paths!

23/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 43

Example of Dijkstra’s Algorithm

Visited:
Backpointers: <dist, node, prev>

A

B

C

E

D

J

H

G

K

F

5

1
3

7

25

9

6

2

3

23

1

18

4
17

10 8

4
10

14

6

<0,G,->

<6,B,G>

<10,H,G>

<13,K,H>

<25,F,G>

<6,B,G>

<8,J,G>

<10,H,G>

<14,K,G>

<25,F,G>

<8,J,G>

<10,H,G>

<14,K,G>

<25,F,G>

<9,J,B>

<11,C,B>

<13,A,B>

<10,H,G>

<14,K,G>

<25,F,G>

<9,J,B>

<11,C,B>

<13,A,B>

<12,A,J>

<14,K,J>

<17,C,J>

<8,J,G>

<14,K,G>

<25,F,G>

<11,C,B>

<13,A,B>

<12,A,J>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<14,K,G>

<25,F,G>

<13,A,B>

<12,A,J>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<12,D,C>

<13,K,C>

<14,K,G>

<25,F,G>

<13,A,B>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<13,K,C>

<13,K,D>

<16,E,D>

<12,A,J>
<11,C,B>

<12,D,C>

<14,K,G>

<25,F,G>

<13,A,B>

<14,K,J>

<17,C,J>

<13,K,H>

<20,A,H>

<12,D,C>

<13,K,C>

<14,K,G>

<25,F,G>

<14,K,J>

<17,C,J>

<20,A,H>

<13,K,C>

<13,K,D>

<16,E,D>

<31,F,K>

<25,F,G>

<17,C,J>

<31,F,K>

<39,F,E>

<31,F,K>

<39,F,E>

<16,E,D>

<0,G,->

start

fringe
<length, node, prev>

23/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 44

What's the cost of Dijkstra's algorithm?

If a graph has N nodes and E edges:

Identify the most expensive line:

while fringe is not empty:
:

for each edge out of node to a neighbour:
:

add neighbour, edge, length-to-neighbour to fringe

How many times might we do that line?
What is the cost of that line?

23/03/2024

12

© Peter Andreae and Xiaoying Gao

COMP261 # 45

Problem with Djikstra's Algorithm

• If we want all shortest paths: Djikstra is best.
• Greedy: never backtracks and every iteration adds a path to the answer

• If we want the shortest path to a goal: Djikstra is wasteful:
• spends time building paths to useless nodes, not on the way to the goal:

• Need to combine:
• length of path to here, AND
• estimate of remaining dist

• Biases the choice towards
nodes that are on the way
to the goal.

