
28/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP261 # 54

Admin

• Teaching evaluation is closing soon, do it on NuKu.
• Test1 marks are released
• Mean total: 30.6 Q1: 13, Q2: 14, Q3: 3
• If you want to check the marking, go to CO358
• No hand back

28/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 55

Admin

• Week 6:
• Term test 2
• In-person marking of Assign 1

• Your signed up tutorial time
• CO241

• Week 7
• Assign2 is due

• Time management during the break

28/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 56

Assign 2
• Part 1, A*

• Most of the graph structure is done: multi-graph, directed, only outgoing edges
• Add walking edges, remove walking edges
• A*: edge length is straight-line distance between two stops, heuristic: straight line distance to goal

• Part 2
• Set up the UI
• Modify the graph: single graph, directed, both in edges and out edges
• Assume you can found a map: node with its component no
• Draw it using different colour and display the map

• Part 3
• UI,
• Graph: single graph, undirected, do not care much about edges, only care neighbour nodes
• Assume you find a list of nodes,
• Draw them using different colours and display them

• Part4: do everything if you can.

28/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 57

Connected Components

• If the graph is not connected,
how do we find the connected
components?

Collection of nodes:

Jane

Pat Lindsay

Jay

MorganJustin

Jean

June

Julie Amy

Jordan
Quinn

Ellis

Rory

Blake

Ali

Riley

Pat Justin Jane Rory Julie Morgan June Jean Quinn Jay Lindsay Riley Amy Ellis Ali Jordan Blake

28/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 58

Connected Components (Undirected Graphs)

• Goal: Label each node of an undirected graph with the id of its component.
• Assume that for all nodes, node.component is initially -1.

ConnectedComponents (graph)
componentNum ← 0;
for each node in nodes:

if node.component = -1: // ie, node is not visited
TraverseComponent(node, componentNum)
componentNum++

TraverseComponent(node, componentNum)
node.component ← componentNum
for each neighbour of node:

if neighbour.component = -1: // ie, neighbour is not visited
TraverseComponent(neighbour, componentNum)

28/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 59

Example of ConnectedComponents

componentNum: 0

Collection of nodes:

Jane

Pat Lindsay

Jay

MorganJustin

Jean

June

Julie Amy

Jordan

Quinn

Ellis

Rory

Blake

Ali

Riley

Pat Justin Jane Rory Julie Morgan June Jean Quinn Jay Lindsay Riley Amy Ellis Ali Jordan Blake

28/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 60

Connected Components: directed graphs.

• Why doesn't the algorithm work on directed graphs?

Jane

Pat Lindsay

Jay

MorganJustin

Jean

June

Julie Amy

Jordan

Quinn

Ellis

Rory
Blake

Ali

Riley

Pat Justin Jane Rory Julie Morgan June Jean Quinn Jay Lindsay Riley Amy Ellis Ali Jordan Blake

28/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 61

Connected Components in Directed Graphs

• A strongly connected component of a directed graph:
• a maximal set of nodes where there is

a path from every node to every
other node.

• Strongly connected components
may not be disconnected
from each other!
• There may be a path

from a node in a component
to a node outside,
but not back,

• There may be a path
from a node outside a component
to a node inside,
but not back.

Jane

Pat Lindsay

Jay

Morgan
Justin

Jean

June

Julie Amy

Jordan

Quinn

Ellis

Rory
Blake

Ali

Riley

How do we find Strongly Connected Components?

28/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 62

Kosuraja's Algorithm: Strongly Connected Components

Kosuraja(graph):
for each node in graph:

node.component ← -1 // initialize nodes to not be in a component
componentNum ← 0

nodeList ← empty list;

visited ← empty set

for each node in graph:
if node is not visited then

ForwardVisit(node, nodeList, visited) // traverse graph from node forward along edges,
// adding nodes to nodeList in post-order

for each node in nodeList in reverse order:
if node.component = -1 then

BackwardVisit(node, componentNum) // traverse graph from node backward along edges
componentNum++ // marking nodes with the component number

28/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 63

Kosuraja's Algorithm: Strongly Connected Components

// Search forward from node, putting node on nodeList after visiting everything it can get to.

ForwardVisit(node, nodeList, visited)
if node is not in visited then

add node to visited.
for each neighbour in node.outNeighbours:

ForwardVisit(neighbour, nodeList, visited)
add node to nodeList.

// Search backwards from node, marking all the nodes than can get to it as the same component

BackwardVisit(node, componentNum)
if node.component = -1 then

node.component ← componentNum

for each backNeighbour in node.inNeighbours:
BackwardVisit(backNeighbour, componentNum).

28/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 64

Kosuraja's Algorithm

A

PE D C

B S R

Q T

NodeList:

U

