
13/03/2024

1

© Peter Andreae and Xiaoying Gao

COMP 261 2024 Tri 1
Regular Expressions

13/03/2024

2

© Peter Andreae and Xiaoying Gao

COMP261 # 4

Admin

• Test Today 5-6 pm: MCLT101 (A-F), MCLT103 (G-N), KKLT303 (P-Z)

• Do not discuss or post any test questions till Monday 11am

13/03/2024

3

© Peter Andreae and Xiaoying Gao

COMP261 # 5

Ambiguous grammar

• Multiple parse trees
• Normally can be solved with right recursion

SCRIPT ::= ["character" NUM STATS | "room" NAME STATS]+
STATS ::= STAT | STATS ";" STATS
STAT ::= ID "=" NUM
ID ::= matches "#[a-z]+"
NUM ::= matches "[1-9][0-9]+"
NAME ::= matches "[A-Z][a-z]*“

character 5 #ht=2; #age=30; #power=3 room Throne #level=2; #size=90; #cap=40

13/03/2024

4

© Peter Andreae and Xiaoying Gao

COMP261 # 6

Regular Languages, Grammars, Expressions

• LL(1) grammars:
• easy to parse with Recursive Descent parsing, with just one step lookahead
• allows recursive constructs (with constructs nested inside constructs indefinitely)

• Easy to make more complex grammars and more complex languages

• Are there simpler grammars and simpler languages?

• Yes: "Regular languages" and "regular grammars"
• Easier to parse
• Equivalent to finite state automata.
• Equivalent to regular expressions

13/03/2024

5

© Peter Andreae and Xiaoying Gao

COMP261 # 7

Lexical Analysis: Using a Regular Expressions

• Need to separate the text into a sequence of tokens

• Java Scanner can use regular expression patterns to separate the tokens.
• eg: scan.useDelimiter("\\s*(?=[<])|(?<=[>])\\s*")

scan.useDelimiter("\\s+|(?=[{}(),;])|(?<=[{}(),;])")

• Alternative approach
• Define a pattern matching the tokens (instead of matching the separators between tokens)
• Still use regular expressions to define the patterns.

• There are tools to make this easier:
• eg LEX, JFLEX, ANTLR, …
• see http://en.wikipedia.org/wiki/Lexical_analysis

• We also use regular expression for parsing terminals

13/03/2024

6

© Peter Andreae and Xiaoying Gao

COMP261 # 8

Regular Expressions to match patterns in text

• Regular expressions are useful for wide range of text matching tasks
• lexical analysis
• editing documents/programs/files, either interactively or scripted
• cleaning or extracting data for a data base
• recognising entries on a web page
• searching in semi-structured data.

• Most large programming languages and shells have regular expressions built-in

• Various different syntax and extensions, but a fairly standard core.

• Regular expressions used in real tools are more complex than
regular expressions of formal language theory.

• https://regex101.com/

13/03/2024

7

© Peter Andreae and Xiaoying Gao

COMP261 # 9

Language of Regular Expressions

• Pattern built from ordinary characters and special characters (“wild cards”)
• "pattern: 15" sequence of ordinary characters.

matches only itself

• "pattern: [1-9][0-9]" […] contain a set of characters – any character could match (- is a range)
matches "pattern: 10" or "pattern: 82",
but not "pattern: 03" or "pattern: 4"

• "pat+ern:? [1-9][0-9]*" + means 1 or more repetitions;
* means 0 or more repetitions;
? means 0 or 1 repetition (optional)

matches "patern: 1" or "patttttern 10034"
but not "paern: 10"

• "(pat)+(dog | cat) (..) groups a subpattern for +, *, or ? or for alternatives
| means "or"

matches "pat dog" or "pat pat pat cat"

13/03/2024

8

© Peter Andreae and Xiaoying Gao

COMP261 # 10

Regular Expressions

• "a (big|red) [bB]all"

• "a (big,)*red bal+"

13/03/2024

9

© Peter Andreae and Xiaoying Gao

COMP261 # 11

Extensions

X{n,m} X, at least n but not more than m times
X{n} X{n,} X, exactly n times or at least n times

[^….] matches any character EXCEPT what is in the […]

\d, \s, \w, \W, … abbreviations for common [….]: digit, space, word char, non-word char

^ $ match the boundary between chars at beginning or end of a line

. matches any character (except new lines)

\b match the boundary between a word and non-word (either side)

\ quotes the next character

"lookahead/lookbehind"
(?=X) / (?!X) matches a boundary, if it is followed by X / not followed by X
(?<=X) / (?<!X) matches a boundary, if it is preceded by X, / not preceded by X

\ also used to
quote characters in
Java strings =>
may need double \\

13/03/2024

10

© Peter Andreae and Xiaoying Gao

COMP261 # 12

Special characters

• Ordinary characters in regexps match the same character in
• Some characters are "special":

[] | + * ? . ^ $ { } () \
(note, different libraries vary a bit)

Special characters mean something in the Regexp language

• Quoting a special character with \ makes it "ordinary"
\[is the left square bracket (instead of the beginning of a list of alternative characters)
\\ is a backslash character.

• Quoting an ordinary character may make it special
\s matches any white space
\W matches any non-word character

13/03/2024

11

© Peter Andreae and Xiaoying Gao

COMP261 # 13

Capturing groups.

• When part of a pattern is surrounded by (…), the text that matches is "captured"
• Later in the pattern you can match the same thing with \1, \2, ….

• a\s([a-z]+)\s\1\sballoon
matches

a big big balloon
a red red balloon
a tiny tiny balloon

but not
a big red balloon
a tiny big balloon

Note: this is not part of "formal" regular expressions, but is in many practical regexp libraries
It takes regexps beyond "regular languages"

