
COMP307/AIML420 — Fundamentals of AI

Assignment 4: Planning and Scheduling

9% of Final Mark — Due: 23:59 Wednesday 29 May 2024

1 Objectives

The goal of this assignment is to help you understand the basic concepts of planning and scheduling, and simple
algorithms for tackling these problems. In particular, the following topics should be reviewed:

• Represent a schedule of job shop scheduling problem,

• Generate a schedule by a dispatching rule for a given job shop scheduling problem,

• Solve vehicle routing problem using heuristics.

This assignment focuses mainly on report writing. Additionally, you will need to write some programs for solving
the vehicle routing problem in Part 2.

IMPORTANT: You must not use external libraries (e.g., PyTorch, sklearn, or any others) or any AI Tools (e.g.,
ChatGPT, CoPilot) to complete this assignment.

2 Part 1: Job Shop Scheduling [40 marks]

In this part, you are required to find solutions (schedules) for a job shop scheduling problem.

Problem Description

The table below gives a job shop schedule problem with 3 jobs and 2 machines.

Job ArrivalTime Operation Machine ProcTime

J1 0
O11 M1 50
O12 M2 25

J2 10
O21 M2 30
O22 M1 35

J3 20
O31 M1 40
O32 M2 20

• (Number of operations) Each job Jj has two operations Oj1 and Oj2.

• (Order constraint) The operations strictly follow the order constraint. That is, Oj2 (j = 1, 2, 3) cannot be
processed until Oj1 has been completely processed.

• (Arrival time) Each job has an arrival time (ArrivalTime). For each job Jj , the first operation Oj1 of job Jj
cannot be processed earlier than its arrival time.

• (Resource constraint) Each operation can only be process by a particular machine. For example, operation O11

can only be processed by machine M1. Each machine can process at most one operation at a time.

1



Solution/Schedule Representation

A solution/schedule for a job shop scheduling problem is a sequence of actions. Each action is composed of the
processed operation, the machine to process the operation, and the starting time. The finishing/completion time of
an action equals to the starting time plus the processing time of the processed operation. The actions are sorted
in the increasing order of their starting time, i.e., the former action starts no later than the latter one. In this
assignment, the following format is adopted to represent a schedule:

Process(O11,M1, 0) → Process(O21,M2, 10) → . . . ,

where Process(o,m, t) stands for an action that processes operation o on machine m, with the starting time t.

Questions

1. (10 marks) Given a schedule whose action sequence is as follows: Process(O11,M1, t1) → Process(O21,M2, t2) →
Process(O31,M1, t3) → Process(O12,M2, t4) → Process(O22,M1, t5) → Process(O32,M2, t6). Since the se-
quence is sorted in the non-decreasing order of the starting time, we know that t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5 ≤ t6.
Calculate the earliest starting time (t1 to t6) of each action. You can draw a Gantt chart to help you think.

Hint: the earliest starting time of an action is the later time between the earliest ready time of the operation
and the earliest idle time of the machine.

2. (10 marks) For the solution given in Question 1, find the completion time of each job, which is the finishing
time of its last operation. Then, calculate the makespan of the solution, which is defined as the maximum
completion time of all the jobs.

3. (10 marks) Write the final solution obtained by the Shortest Processing time (SPT) dispatching rule.
You may draw a figure (Gantt chart) to help you find the solution.

4. (5 marks) For the solution obtained by the SPT rule, calculate the completion time of each job and the
makespan. Compare the makespan between this solution with that obtained in Question 1 to find out which
solution is better in terms of makespan.

Note: the solution in Question 1 is obtained by the First-Come-First-Serve (FCFS) rule.

5. (5 marks) The two compared solutions in Question 4 are obtained by the SPT and FCFS rules, respectively.
If one solution is better then the other, does it mean that the rule that generates the better solution is better
than the other rule? Why or why not? Provide a short explanation of your answer.

6. (for AIML420 ONLY, 10 marks) Often in practice, neither the SPT nor FCFS rules are good enough
for solving the job shop scheduling problem. Suggest two methods to solve the job shop scheduling problem.
One method is suitable for solving static problems (all information for scheduling is known in advance). The
other method is suitable for solving dynamic problems (e.g., unpredicted job arrivals can happen in real
time). Clearly describe your methods (e.g., algorithm framework, solution representation, search
operators). Support your description with pseudo-code or flowchart diagrams.

NOTE: No programming is required to answer the above questions.

2



3 Part 2: Vehicle Routing [60 marks]

Every day, a delivery company needs to deliver goods to many different customers. The deliveries are achieved by
dispatching a fleet of vehicles from a centralised storage warehouse. The goal of this problem is to design a route for
each vehicle so that all of the customers are served by exactly one vehicle and the total travel distance of all vehicles
is minimised. Additional problem complexity comes from the fact that each vehicle has a fixed storage capacity and
the customers have varied demands.

Below is an example of the Vehicle Routing Problem (VRP). The red box indicates the central warehouse (depot).
Each circle stands for a customer. All customers are distributed in the 2D plane. There are 6 vehicles routes, each
with a different colour. Each route starts from the depot, serves a subset of customers, and returns to the depot
again. Each route must satisfy the capacity constraint of a vehicle, i.e., the total demand of the customers served by
the route does not exceed the vehicle’s capacity.

Data

In the provided vrp-data.zip, there are two VRP instances, along with their corresponding optimal solutions. The
instance is named with n(n)-k(k).vrp, where n is the number of customers and k is the number of vehicles. The
corresponding solution is named as .sol.

The instance file is basically self-explained.

• It starts with some information rows, including “NAME”, “COMMENT”, “TYPE”, “DIMENSION”,
“EDGE WEIGHT TYPE”, which you can ignore/skip safely.

• The row “CAPACITY” gives the capacity of the vehicles.

• Under “NODE COORD SECTION”, each row shows the coordinates of each node (customer), in the format
of “index x-coordinate y-coordinate”.

• Under “DEMAND SECTION”, each row shows the demand of each node, in the format of “index demand”.

• Under “DEPOT SECTION”, the first row is the index of the depot, and the second is −1, indicating the end
of the file.

To help you code, you are provided two code templates, one in Python and the other in Java. You can use either
of them to work on this part (recommended). You can also write your own code from scratch, without using any of
the two code templates (not recommended).

3



Python Code Template

In the provided python.zip, you can find three Python code template files to help you load the .vrp instance file,
read a .sol solution file, and visualise a solution.

• The loader.py file contains the following functions:

– load data(): read a VRP instance from a .vrp file.

– load solution(): read a VRP solution from a .sol file.

• The utility.py file contains the following functions:

– calculate euclidean distance(): calculate the Euclidean distances between two nodes. This is a
TODO item if you use this code template in your assignment.

– calculate total distance(): calculate the total Euclidean distance of a solution. This is a TODO
item if you use this code template in your assignment.

– visualise solution(): visualise the solution on a 2D figure.

NOTE: The visualisation function assumes that in the solution, the depot index is 0 rather than
1. Therefore, you must reduce all the node IDs by 1 for visualisation. For example, if the original
route is [2, 5, 4, 3], the corresponding input vrp sol should be [1, 4, 3, 2].

• The main.py file contains the following functions:

– main(): the main function with three examples that read the .vrp file, and then (1) read its optimal
solution from the .sol file, and visualise the optimal solution; (2) construct a solution using the nearest
neighbour heuristic and visualise it; (3) construct a solution using the savings heuristic and visualise it.

– nearest neighbour heuristic(): construct a solution using the nearest neighbour heuristic. This is a
TODO item if you use this code template in your assignment.

– savings heuristic(): construct a solution using the savings heuristic. This is a TODO item if you use
this code template in your assignment.

The template code relies on the numpy and matplotlib Python libraries. You should install these libraries if you
haven’t.

• Installing numpy: https://numpy.org/install/.

• Installing matplotlib: https://matplotlib.org/stable/users/installing.html

Java Code Template

In the provided java.zip, you can find the following .java Java template files.

• The VRPInstance.java file provides the data structure for a VRP instance.

• The VRPSolution.java file provides the data structure for a VRP solution.

• The VRPNode.java file provides the data structure for a node.

• The VRPIO.java file contains the following I/O related functions:

– loadInstance(): read a VRP instance from a .vrp file.

– loadSolution(): read a VRP solution from a .sol file.

– writeSolution(): write a VRP solution into a .sol file.

• The main.java file contains a main() function. It reads a .vrp instance file. Then, it generates a nnSol

solution by using the nearest neighbour heuristic, and subsequently a svSol solution by using the savings
heuristic. Finally, it writes the nnSol into the nn.sol file, and the svSol into the sv.sol file.

4



– NB: You can use the main.py Python file to read the obtained .sol solution files and visualise
them.

• The Utility.java file contains the following functions:

– calculateEuclideanDistance(): calculate the Euclidean distances between two nodes. This is a TODO
item if you use this code template for your assignment.

– calculateTotalCost(): calculate the total cost (Euclidean distance) of a solution. This is a TODO
item if you use this code template for your assignment.

– nearestNeighbourHeuristic(): construct a solution using the nearest neighbour heuristic. This is a
TODO item if you use this code template for your assignment.

– savingsHeuristic(): construct a solution using the savings heuristic. This is a TODO item if you use
this code template for your assignment.

Implementation

• A recommended way is to fill in the following TODO items in the code template provided.

– For the Python code template, they are in

∗ The main(), nearest neighbour heuristic() and savings heuristic() functions in main.py.

∗ The calculate euclidean distance() and calculate total distance() functions in utility.py.

– For the Java code template, they are in the Utility.java file.

∗ After obtaining the .sol files, complete the main() function in main.py to read the .vrp file and the
.sol files generated by your code, and visualise them.

∗ This can simply be done by calling the loader.load solution() and utility.visualise solution()

functions.

• If you do not want to use the code template provided (not recommended), you can

– use any other programming languages to (1) read the .vrp file, (2) generate the solution using the required
heuristics, and (3) output the solution in the same format as in the given .sol files.

– complete the main() function in main.py to read the .vrp file and the .sol files generated by your code,
and visualise them.

– write a clear readme file to explain how to run your source code on an ECS Desktop computer to
generate the .sol files.

Requirement

1. (20 marks) Implement the nearest neighbour heuristic to generate a VRP solution. The distance between two
nodes is defined as the Euclidean distance. That is, given two nodes v1 = (x1, y1) and v2 = (x2, y2), the
distance is calculated as

dist(v1, v2) =
√

(x1 − x2)2 + (y1 − y2)2

2. (20 marks) Implement the savings heuristic to generate a VRP solution.

3. (20 marks) In the report, use the Python code template to visualise the solutions obtained by the heuristics,
compare the solutions generated by the two heuristics and the optimal solution. Discuss the differences among
these solutions in terms of their total distances.

4. (for AIML420 ONLY, 10 marks) Suggest a more advanced method that can potentially perform better
than the the nearest neighbour heuristic and the savings heuristic. Clearly describe your methods (e.g.,
algorithm framework, solution representation, search operators). Support your description with
pseudo-code or flowchart diagrams.

5



4 Submission Guidelines

4.1 Assessment

We will endeavour to mark your work and return it to you as soon as possible, hopefully within 2 weeks after the
submission deadline. The tutors will run a number of help desks to provide guidance (but won’t tell you the answers!).

4.2 Submission Requirements

1. Programs (Executive program files and source files) for Part 2. Please provide a readme file that
specifies how to compile and run your program. A script file called sampleoutput.txt should also be provided
to show how your programs can run properly. If you programs cannot run properly, you should provide a
buglist file.

2. A report document that consists of the answers of all the individual parts. The document should mark
each part clearly. Only PDF format is acceptable for the report document. Reports in other document format
(e.g., docx, txt) will not be marked.

4.3 Submission Method

The programs and the PDF report should be submitted through the web submission system (accessible from the
COMP307 or AIML420 course web site) by the due date and time. Please ensure you submit to the correct
system based on which course you are enrolled in.

Please check again that your programs can be run on the ECS machines easily according to your readme. If
tutors cannot run your code, you may lose marks! Each tutor has a limited amount of time (≤ 5 minutes) to get
your code running, so please don’t ask them to use Pycharm, IntelliJ IDEA, Visual Studio, etc. to run your code.
All these IDEs support exporting runnable code.

4.4 Late Penalties

The assignment must be submitted on time unless you have made a prior arrangement with the course co-ordinator
or have a valid medical excuse. We use the ECS extension system for all extension requests. Please make an extension
request through the ECS system if you think you have a valid reason.

The penalty for assignments that are handed in late without prior arrangement is one grade reduction per day.
Assignments that are more than one week late will not be marked.

4.5 Plagiarism

Plagiarism in programming (copying someone else’s code) is just as serious as written plagiarism, and is treated
accordingly. Make sure you explicitly write down where you got code from (and how much of it) if you use any
other resources asides from the course material. Relying heavily on borrowed code may lead to deductions in marks,
whereas plagiarism warrants a zero mark and may entail disciplinary actions.

6


