
Fundamentals of Artificial Intelligence

COMP307/AIML420
Evolutionary Computation 1:

Evolutionary Computation and
Learning

1

Outline
• Why evolutionary computation (EC) and learning?
• What is EC?
• EC Techniques
• Key characteristics and design questions
• Genetic algorithms: representation, selection and genetic

operators
• Overview of other evolutionary algorithms

2

Why Do We Need Evolutionary Computation?
• We have discussed several methods and algorithms in ML

• But they have limitations:
– Local optima

– Needs to predefine/fix the structure/model of the solution, and only
learns the parameters/coefficients

– Many parameters to learn
 (high-dimensional optimization)

• Evolutionary Computation (EC) is one technique that can
avoid some of the problems

3

What is Optimization?
• In an optimization problem, we are trying to find the best

values of the variables that gives the optimal value of the
function that we are optimising.

• E.g., minimize fuel use of courier deliveries: time, distance
maximize classification accuracy

• Decision variable(s)
• Objective function(s)
• Constraint(s)
• …

4

Examples
• In machine learning

– Optimize the weights of a neural network
– Optimize the architecture (#layers, #nodes) of a neural network
– Feature selection (select a subset of important features to use)

• Other domains
– Design the shape of a racing car/plane wings
– Schedule lecture rooms (timetabling)
– Schedule jobs in cloud computing
– Schedule trucks for delivery

5

Evolutionary Computation: Origin Story
• In the 1950s, long before computers were widely used, the

idea to use Darwinian principles for automatic problem
solving was first suggested.

• Good individuals have better chance to survive in the
nature.

• Three different interpretations of this idea were developed
independently:
– Evolutionary programming: Lawrence Fogel (USA)
– Evolution strategies: Ingo Rechenberg (Germany)
– Genetic algorithms: John Holland (USA)

• These areas developed separately for over 15 or 20 years

• Since the early 1990s, they have been seen as different
representatives of one technology: evolutionary computation

6

Evolutionary Computation and Learning
• In computer science, evolutionary computation is a family

of “nature inspired” AI algorithms for global optimization.

• In technical terminology, they are a family of population-
based trial-and-error problem solvers with a metaheuristic or
stochastic optimization character.

• Evolutionary Learning is the use of evolutionary
computation methods for tackling machine learning tasks

7

EC Techniques
• Evolutionary algorithms (EAs)

– Genetic algorithms (the biggest branch)
– Evolutionary programming
– Evolution strategies
– Genetic Programming (Koza, 1990s, fast growing area)

• Swarm intelligence (SI)
– Ant colony optimization
– Particle swarm optimization (PSO)
– Artificial immune systems

• Other techniques
– Differential evolution
– Estimation of distribution algorithms
– …

8

Evolutionary Algorithm

9

Individual
Evaluation

Best individual

Evolutionary Algorithms
• Search for the best individual by evolving a population with

genetic operators (e.g., reproduction, crossover, mutation)

10

……
Evaluation

Evaluation

PopulationPopulation Population

Genetic Operations/evolution Genetic Operations/evolution
Generation

Mating pool Mating pool

Current generation New generation

Selection Selection

Key Characteristics
• One (or more) populations of individuals
• Dynamically changing populations due to the birth and

death of individuals (through crossover, mutation, …)
• A fitness function which reflects the ability of an individual

to survive and reproduce (“survival of the fittest”)
• Variational inheritance: offspring closely resemble their

parents, but are not identical

• Final solution (individual): the one with the best fitness
• Fitness could be accuracy, cost, error, …

11

Population VS Individual
Evolution

Key Design Questions
• Representation

– How can we represent individuals (solutions)?
• Evaluation

– How can we evaluate individuals (fitness function)?
– A fitter individual should have a better objective value (e.g. smaller error)

• Selection
– How to select individuals into the mating pool (selection scheme)?
– Fitter individuals should be more likely to survive/reproduce
– Selection pressure

• Genetic Operators
– How to generate new individuals (crossover, mutation operators)?
– Children inherit strong parts of parents
– Maintain diversity (jump out of local optima)

• Other parameters
– population size, mating pool size, stopping criteria, …

12

Individual Representation
• Problem dependent

• Binary string (e.g., feature selection)

• Continuous vector (e.g., ANN weight optimization)

• Permutation (e.g., traveling salesman problem)

• Variable length (e.g., symbolic regression)

13

1 0 0 1 1 0 0 0 1 1

-0.73 0.10 0.35 -0.06 0.23 -0.13 0.10 0.35 -0.06 -0.29

1 3 5 2 4 1 3 5 4 2

Fitness Evaluation
• Fitness function: reflect the quality of individuals

– Must correspond to optimality property
– Must be computable
– Smoothness (in general):

• Small changes to candidate -> small changes to quality/fitness
• Large changes to candidate -> large change

• Depending on the problem, the fitness function could be:
– the larger, the better — maximization
– the smaller, the better — minimization
– e.g., for classification, maximizing accuracy or minimizing error

14

Selection
• Uniform selection

– Each individual has the same chance
to be selected

• Roulette wheel selection (GA)
– The probability of being selected is

proportional to the fitness
– Assume fitness is to be maximized

• K-tournament selection (GP)

• Truncate selection
– Select the best k individuals

15

Selection pressure VS diversity

Genetic Operators
• Depends on the problem – individual representation

A representative: Genetic Algorithms

– Relocate a bit of a binary vector

– Resample an element of a continuous vector

– Shuffle a part of a sequence

– ...

16

-0.73 0.10 0.35 -0.06 0.23

1 3 5 2 4

1 0 0 1 1 1 1 0 0 1

-0.73 0.18 0.35 -0.06 0.23

1 4 5 2 3

Genetic Algorithm
• Representation: individuals are binary strings
• An individual is also called a chromosome
• Elitism (keep best k individuals to the next generation, e.g., 1)

17

A Basic Genetic Algorithm
• Randomly initialize a population of chromosomes

• Repeat until stopping criteria are met:
– Construct an empty new population
– Repeat until the new population is full:

• Select two parents from the population by roulette wheel selection
• Apply crossover to the two parents to generate two children
• Each child has a probability (mutation rate) to undergo mutation
• Put the two children into the new population

– End Repeat
– Move to the new population (new generation)

• End Repeat

• Output the best individual from the final population

18

A Simple GA Example
• OneMax Problem

– Target to (11111…1)

– More zeros means worse: far away from the target
– Simple “benchmark” problem!

• Representation: bit string

• Fitness function: 1 + ∑! 𝑥! (the larger the better)

 Or just ∑𝑥! (more greedy), Or 100 + ∑𝑥! (any constant number)

• Selection: Roulette wheel selection

• Genetic operators: Crossover: single-point crossover

 Mutation: point mutation

19

A Simple GA Example
• 10 bits (Optimal fitness = 11)
• population size = 20
• mutation rate = 0.1 (10%), crossover rate = 0.8 (80%),

reproduction rate = 0.1 (10%)
• Run for 10 generations

20

Keep elites (i.e., best ones) to the next generation!!!

Summary
• Evolutionary computation

• Representations

• Selection and genetic operators

• Genetic algorithms

• Next Tutorial: EC and its applications

21

