Fundamentals of Artificial Intelligence

197 J| VICTORIA UNIVERSITY OF

yosd WELLINGTON

N\~ TE HERENGA WAKA

COMP307/AIML420

Evolutionary Computation 1:
Evolutionary Computation and
Learning

Outline

Why evolutionary computation (EC) and learning?
What is EC?

EC Techniques

Key characteristics and design questions

Genetic algorithms: representation, selection and genetic
operators

Overview of other evolutionary algorithms

Why Do We Need Evolutionary Computation?

 We have discussed several methods and algorithms in ML

rartan £ pt.

« But they have limitations:
— Local optima l

Local minima

Global minima

— Needs to predefine/fix the structure/model of the solution, and only
learns the parameters/coefficients N %

— Many parameters to learn M
oL V:gkv:g"
»%@Kd

(high-dimensional optimization)
« Evolutionary Computation (EC) is one technique that can
avoid some of the problems

What is Optimization?

In an optimization problem, we are trying to find the best
values of the variables that gives the optimal value of the
function that we are optimising.

E.g., minimize fuel use of courier deliveries: time, distance
maximize classification accuracy

Decision variable(s)
Obijective function(s)
Constraint(s)

Examples

In machine learning

— Optimize the weights of a neural network

— Optimize the architecture (#layers, #nodes) of a neural network
— Feature selection (select a subset of important features to use)

Other domains
— Design the shape of a racing car/plane wings
— Schedule lecture rooms (timetabling)
— Schedule jobs in cloud computing
— Schedule trucks for delivery

Examples

Evolutionary Computation: Origin Story

In the 1950s, long before computers were widely used, the
idea to use Darwinian principles for automatic problem
solving was first suggested.

Good individuals have better chance to survive in the
nature.

Three different interpretations of this idea were developed
independently:

— Evolutionary programming: Lawrence Fogel (USA)

— Evolution strategies: Ingo Rechenberg (Germany)
— Genetic algorithms: John Holland (USA)

These areas developed separately for over 15 or 20 years

Since the early 1990s, they have been seen as different
representatives of one technology: evolutionary computation

6

Evolutionary Computation and Learning

* |In computer science, evolutionary computation is a family
of “nature inspired” Al algorithms for global optimization.

* In technical terminology, they are a family of population-
based trial-and-error problem solvers with a metaheuristic or

stochastic optimization character.

« Evolutionary Learning is the use of evolutionary
computation methods for tackling machine learning tasks

EC Techniques

Evolutionary algorithms (EAS)

— Genetic algorithms (the biggest branch) 4 4§
— Evolutionary programming 5 \
— Evolution strategies Sl I

— Genetic Programming (Koza, 1990s, fast growing area)

Swarm intelligence (Sl) e
— Ant colony optimization O I Food
— Particle swarm optimization (PSO) : o
— Artificial immune systems Y~ L
®) Nest T ’: #* o **Food
Other techniques
— Differential evolution o| o= PR
— Estimation of distribution algorithms Nest Food

Evolutionary Algorithm

Add the offspring
to the offspring

Standard Evolutionary Algorithm population

_Generate an Best individual Generate an
initial population offspring by
mutation

A
|
| yes Y !
Individual > Create an empty population is S:Ledcggng?;egf,
Evaluation offspring population full? offspring by crossover
X yes

Update the current
population with the
offspring population

Evolutionary Algorithms

« Search for the best individual by evolving a population with
genetic operators (e.g., reproduction, crossover, mutation)

Population Population Population

O ® ©
Evalu’ation ’

Selection

Current generation New generation

y \

—>
Generation
Genetic Operation@ Genetic Operation@

Mating pool Mating pool

10

Key Characteristics

One (or more) populations of individuals

Dynamically changing populations due to the birth and
death of individuals (through crossover, mutation, ...)

A fitness function which reflects the ability of an individual
to survive and reproduce (“survival of the fittest”)

Variational inheritance: offspring closely resemble their
parents, but are not identical

Final solution (individual): the one with the best fitness
Fitness could be accuracy, cost, error, ...

11

Key Design Questions

Representation
— How can we represent individuals (solutions)?

Evaluation
— How can we evaluate individuals (fithess function)?
— A fitter individual should have a better objective value (e.g. smaller error)
Selection
— How to select individuals into the mating pool (selection scheme)?
— Fitter individuals should be more likely to survive/reproduce
— Selection pressure
Genetic Operators
— How to generate new individuals (crossover, mutation operators)?
— Children inherit strong parts of parents
— Maintain diversity (jump out of local optima)
Other parameters
— population size, mating pool size, stopping criteria, ...

12

Individual Representation

Problem dependent

Binary string (e.g., feature selection)

Continuous vector (e.g., ANN weight optimization)

-0.73 | 0.10 [0.35 |[-0.06 | 0.23 -0.13 | 0.10 | 0.35 |-0.06 |-0.29

Permutation (e.g., traveling salesman problem)

Variable length (e.g., symbolic regression)

13

Fitness Evaluation

* Fitness function: reflect the quality of individuals
— Must correspond to optimality property
— Must be computable

— Smoothness (in general):
« Small changes to candidate -> small changes to quality/fitness
« Large changes to candidate -> large change

el PR

« Depending on the problem, the fithess function could be:
— the larger, the better — maximization
— the smaller, the better — minimization
— e.g., for classification, maximizing accuracy or minimizing error

14

Selection

Uniform selection

— Each individual has the same chance
to be selected

qneel is rotagg o

Roulette wheel selection (GA)
— The probability of being selected is "z X
: - as gt share of ~_] o
proportional to the fithess it e e
— Assume fitness is to be maximized

m

=
[e)
-

oooooooo

E_.
[

- K-tournament selection (GP) [l——— = |
| ’ ’ s xeremosme -
 Truncate selection : — —
_ Select the best k individuals 3]

15

Genetic Operators

« Depends on the problem — individual representation

A representative: Genetic Algorithms

— Relocate a bit of a binary vector

— Resample an element of a continuous vector

-0.73 10.10 (035 |-0.06 {0.23 | = |-0.73 |10.18 | 0.35 |-0.06 | 0.23

— Shuffle a part of a sequence

B B[

1 3

Genetic Algorithm

* Representation: individuals are binary strings
* An individual is also called a chromosome
« Elitism (keep best k individuals to the next generation, e.g., 1)

Initial strings Crossover Mask Offspring

Single-point crossover:

11101p01000 11101010101

\ 11111000000 /
\ 00001001000

\

00001D10101

Two-point crossover:

11[10100/1 000 11001011000

“_ 00111110000 "
00p0o101p101 / ~a 00101000101

Uniform crossover:
111010010 10001000100

\ 10011010011 /
00001010101 / \ 01101011001

Point mutation: 11101001000 = 11101011000

A Basic Genetic Algorithm

« Randomly initialize a population of chromosomes

* Repeat until stopping criteria are met:

— Construct an empty new population

— Repeat until the new population is full:
« Select two parents from the population by roulette wheel selection
« Apply crossover to the two parents to generate two children
« Each child has a probability (mutation rate) to undergo mutation
« Put the two children into the new population

— End Repeat
— Move to the new population (new generation)

 End Repeat

« Qutput the best individual from the final population

18

A Simple GA Example

OneMax Problem
— Targetto (11111...1) -

gD

(@ ©®
Lfoly:

ImO

Examples

— More zeros means worse: far away from the target

— Simple “benchmark” problem!

Representation: bit string

Fitness function: 1 +);; x; (the larger the better)

Or just), x; (more greedy), Or 100 + }; x; (any constant number)
Selection: Roulette wheel selection

Genetic operators: Crossover: single-point crossover

Mutation: point mutation

19

A Simple GA Example
10 bits (Optimal fitness = 11)
population size = 20

mutation rate = 0.1 (10%), crossover rate = 0.8 (80%),
reproduction rate = 0.1 (10%)

Run for 10 generations

generation
generation
generation
generation
generation

generation
generation
generation
generation
generation

OCONOUIAWNREO

average
average
average
average
average
average
average
average
average
average

fitness
fitness
fitness
fitness
fitness
fitness
fitness
fitness
fitness
fitness

.0, best fitness 1is 9
.65, best fitness is 10
.8, best fitness is 11
.9, best fitness is 9
.45, best fitness is 9
.95, best fitness is 9
.3, best fitness is 11
.65, best fitness 1is 10
.25, best fitness is 8
.6, best fitness is 8

OO OONOOOOO OO

Keep elites (i.e., best ones) to the next generation!!!

20

Summary
Evolutionary computation
Representations
Selection and genetic operators

Genetic algorithms

Next Tutorial: EC and its applications

