
Fundamentals of Artificial Intelligence

COMP307/AIML420
Evolutionary Computation 2: 
Genetic Programming (GP)

1



• Includes nature-inspired techniques and population-based 
approaches
– Evolutionary algorithms (natural evolution-inspired)
– Swarm intelligence (more social-inspired)
– Others …

Review – Evolutionary Computation

3

Evolutionary Computation

Evolutionary Algorithms

GA

GP

ES

EP

…

Swarm Intelligence

PSO

ACO

AIS

…

Others

LCS

DE

Memetic

…



§ Population based
§ Evolution process, i.e., improve solutions generation by 

generation

§ Representation
§ Evaluation 
§ Parent selection
§ Offspring generation (genetic operators)

Review – Keys of Genetic Algorithm

4

……
Evaluation

Evaluation

PopulationPopulation Population

Genetic Operations/evolution Genetic Operations/evolution
Generation

Mating pool Mating pool

Current generation New generation

Selection Selection



Review – Genetic Operators

5



6http://gpbib.cs.ucl.ac.uk/



Outline
• GP representation: Terminals and functions

• Program generation

• Evaluation: Fitness functions

• Parent selection

• Offspring generation: Genetic operators 

• A basic GP algorithm

• Tackling a problem with GP

7



Genetic Programming
• GP follows the process of a standard evolutionary algorithm

8

Individual
Evaluation

Best individual



Genetic Programming
• Genetic programming (GP) inherits properties from 

Evolutionary Algorithms (e.g., GAs) and automatic program
learning

• Automatically learning a set of computer programs for a 
particular task is a dream of computer scientists 

• The term GP originates from the notion that computer 
programs can be represented as a tree-structured genome

• GP uses a similar evolutionary process to the general 
evolutionary algorithms (e.g., GAs)
– GA uses bit strings to represent solutions;

GP uses tree-like structures that can represent computer programs
– GA bit strings use a fixed length representation;

GP trees can vary in length 

9



LISP S-Expressions
• Form of a LISP function:

(FUNCTION-NAME ARG1 ARG2 ARG3, …) 

The arguments are evaluated, the function is applied to the 
arguments and then the output returned

• (+ 1 2 3) evaluates to 6 

• (+ (- 3 2) (* 2 4)) evaluates to (+ 1 8) which is 9 

• (IF (> TIME 10) 3 4) evaluates to 3 if TIME is 11 or more， 

and to 4 if time is 10 or less 

• If TIME=20, what is the value of (+ 1 2 (IF (> TIME 10) 3 4))? 

10



Programs as Tree Structures
• Representation: Tree Structures

• Programs are constructed from a terminal set & function set

• Terminals and functions are also called primitives

11

functions

terminals



GA vs GP: Representation

12



Terminal Set
• A terminal set consists of a set of terminals:

– attributes/features 
– “Constants” (randomly generated, but don’t change)

• Terminals have no arguments & form the leaves of the tree 

• Terminals represent the inputs of a GP tree/program, 
i.e. input from the environment (a specific task)

• Attributes or features of a problem 
domain are usually used as 
terminals

13

functions

terminals



Function Set
• A function set consists of a set of functions or operators 
• Functions form the root and the internal nodes of the tree 

representation of a program

• Two kinds of functions: general 
functions, and domain-specific 
functions

• General functions: 
– Arithmetic functions: +, -, *, %.
– Protected division (%): returns 0 (or 1) if denominator is 0
– Other functions: sin, cos, exp, log, abs, ... 

• Domain Specific functions: e.g., image processing operators

14

functions

terminals



Sufficiency and Closure 
• Selection of the functions and terminals is critical to success

• The terminal set and the function set should be selected to 
satisfy the requirements of sufficiency and closure

• Sufficiency: There must be some combination of terminals 
and function symbols that can solve the problem

• Closure: Any function can accept any input value returned 
by any function (and any terminal)
– NB: “strongly-typed GP” violates this! 

15



Program Generation
• For initializing a population, or performing

• Maximum program size: the maximum depth of a tree

• Depth: The depth of a node is the minimum number of 
edges that must be traversed from the root of the tree to it

16

Depth 0

Depth 1

Depth 2

Depth 3



Program Generation
• There are several ways of generating programs: full, grow, 

and ramped half-and-half

• Full method:
– Functions are selected as the nodes of the program tree until a given 

depth is reached
– Then terminals are selected to form the leaf nodes
– This ensures that full, entirely balanced trees are constructed

17



Program Generation
• Grow method:

– Nodes are selected from both functions and terminals
– If a terminal is selected, the branch with this terminal is terminated 

and we move on to the next non-terminal branch in the tree

• Ramped half-and-half method:
– Both the full and grow methods are combined
– Half of the population are created by using the grow method and the 

other half using the full method

• Ramped half-and-half is widely used in 
many GP systems 
– Good balance of the benefits of each!

18



Fitness Evaluation
• The fitness of a program generated by the evolutionary 

process is evaluated according to the fitness function
 
• The fitness function should give graded and continuous 

feedback on how good a program is on the training set

• The fitness function plays a very important role in the 
evolutionary process and varies with the problem domain

• Fitness cases: instances used for fitness evaluation
– Training cases: training instances used for learning
– Test cases: test instances used for performance evaluation

19



Fitness Function Examples
• Image matching: the number of matched pixels 

• Robot learning obstacle avoidance: the number of walls hit 

for a robot 

• Classification task: the number of correctly classified 

examples, error rate, or classification accuracy 

• GP-controlled gambling agent: the amount of money won 

• Artificial life application: the amount of food found and eaten 

20



Parent Selection 
• Roulette wheel selection

(popularly used in GA)
– The probability of being selected is 

proportional to the fitness
– Assume fitness is maximized

• K-tournament selection (popularly
used in GP)

• Larger K, greedier?
• Small K, greedier?

21



Genetic Operators in GP
• Evolution proceeds by updating the initial population by the 

use of genetic operators 
– An initial population usually has very bad fitness
– Three main operators in GP: reproduction, mutation, and crossover

• Reproduction:
– Simply copy a selected program to the new generation
– Allow good programs to survive
– Elitism: keep only the best one

or several

• Mutation: 
– Operate on a single selected program
– Remove a random subtree of the program
– Generate a new subtree in the same place

22

Mutation



Mutation in GP

23



Crossover in GP
• Swap a subtree of one parent 

with a subtree of the other 

• Put the two newly-formed 
programs into the 
next generation

24

Crossover



Crossover in GP
• Swap a subtree of one parent 

with a subtree of the other 

• Put the two newly-formed 
programs into the 
next generation

• How is the tree depth used?
After we get offspring from
crossover/mutation, we
check the depth of offspring,
if depth(new) > depth,

throw away;
Otherwise,

keep them;
25



A Basic GP algorithm
• Initialise the population 

• Repeat until the stopping criteria is met:
– Evaluate the fitness of each program in the current population
– Create an empty new population
– Repeat until the new population is full:

• Select programs in the current generation 
(often tournament selection)

• Apply genetic operators to the selected programs to generate 
offspring (e.g., 80% crossover, 15% mutation, 5% reproduction). 

• Insert the children programs into the new generation. 

• Output the best individual program in the population. 

26



Tackling a Problem with GP
• What terminals should be used in the program trees? 

• What functions are needed to represent the program tree? 

• What is the fitness function/measure? 

• Parameters values for controlling the evolutionary process: 

e.g. what population size, tree depth and tournament size?

• When to terminate a run?

• Which genetic operators should be used, and how 

frequently should they be applied?

27



Popularly used GP libraries
• DEAP in Python

https://github.com/DEAP/deap

• ECJ in Java
https://cs.gmu.edu/~eclab/projects/ecj/
can check more details at src/ec/app/tutorial

28

https://github.com/DEAP/deap
https://cs.gmu.edu/~eclab/projects/ecj/


Summary
• Overview of EC (GA) process

• GP basics: representation, terminals, functions, fitness, 

genetic operators, selection 

• GAs vs GP 

• Basic GP algorithm 

• Next lecture: GP regression and classification

29


