Fundamentals of Artificial Intelligence

197 J| VICTORIA UNIVERSITY OF

yosd WELLINGTON

N\~ TE HERENGA WAKA

COMP307/AIML420

Evolutionary Computation 2:
Genetic Programming (GP)



Review — Evolutionary Computation

* Includes nature-inspired techniques and population-based
approaches
— Evolutionary algorithms (natural evolution-inspired)
— Swarm intelligence (more social-inspired)

— Others ...
Evolutionary Computation
Evolutionary Algorithms Swarm Intelligence

Others

EP

Es =




Review — Keys of Genetic Algorithm

Population based

Evolution process, i.e., improve solutions generation by
g e n e ratl O n Population Population Population

Mating pool Mating pool

Representation

Evaluation

Parent selection

Offspring generation (genetic operators)



Review — Genetic Operators

Single-point crossover:

Two-point crossover:

Uniform crossover:

Point mutation:

Initial strings

101001000

00001010101

11

101001000

00001010101

11

1010010

Crossover Mask

‘\\\\ 11111000000

\

\\\\ 00111110000

7
N

‘\\\‘ 10011010011

/N

00001010101 e

11

101001000

A

Offspring

11101010101

00001001000

11001011000

00101000101

10001000100

01101011001

11101011000



IEEE Transactions on Evolutionary Computation

H

16.49

Impact
Factor

4

,/'.
/
B

Y/

Authc
Reso!

Submis
Guidelir

Submit

http://gpbib.cs.ucl.ac.uk/




Outline

GP representation: Terminals and functions
Program generation

Evaluation: Fithess functions

Parent selection

Offspring generation: Genetic operators

A basic GP algorithm

Tackling a problem with GP




Genetic Programming
« GP follows the process of a standard evolutionary algorithm

Standard Evolutionary Algorithm

(

Generate an
initial population

> (Best individual >

A 4

yes

Individual
Evaluation

A

Create an empty
offspring population

Add the offspring

Offspring
population is
full?
yes

to the offspring
population

i

Generate an
offspring by
mutation

Select two parents,
and generate an
offspring by crossover

Update the current
population with the
offspring population




Genetic Programming

Genetic programming (GP) inherits properties from
Evolutionary Algorithms (e.g., GAs) and automatic program
learning

Automatically learning a set of computer programs for a
particular task is a dream of computer scientists

The term GP originates from the notion that computer
programs can be represented as a tree-structured genome

GP uses a similar evolutionary process to the general
evolutionary algorithms (e.g., GAs)

— GA uses bit strings to represent solutions;
GP uses tree-like structures that can represent computer programs

— GA bit strings use a fixed length representation;
GP trees can vary in length



LISP S-Expressions

Form of a LISP function:
(FUNCTION-NAME ARG1 ARG2 ARG3, ...)

The arguments are evaluated, the function is applied to the
arguments and then the output returned

(+ 12 3) evaluates to 6
(+ (-3 2) (*24)) evaluates to (+ 1 8) which is 9
(IF (> TIME 10) 3 4) evaluates to 3 if TIME is 11 or more,

and to 4 if time is 10 or less

If TIME=20, what is the value of (+ 1 2 (IF (> TIME 10) 3 4))?

10



Programs as Tree Structures

* Representation: Tree Structures
 Programs are constructed from a terminal set & function set

« Terminals and functions are also called primitives




GA vs GP: Representation

Genetic Algorithm Genetic Programming

» Bit string representation » Tree-like structure
»Fixed in length »>Vary in length (7
> Inflexible > Flexible
(- )
<>
1 0 1 1 0 1 0 1 1 0 O ‘ ° ° ° °
C D

DIVIOIO :



Terminal Set

A terminal set consists of a set of terminals:

— attributes/features
— “Constants” (randomly generated, but don’t change)

Terminals have no arguments & form the leaves of the tree

Terminals represent the inputs of a GP tree/program,

l.e. input from the environment (a specific task)
, functions

Attributes or features of a problem
domain are usually used as (
terminals




Function Set

A function set consists of a set of functions or operators

Functions form the root and the internal nodes of the tree

representation of a program
functions

Two kinds of functions: general
functions, and domain-specific
functions

General functions: ) )
— Arithmetic functions: +, -, *, %.

— Protected division (%): returns 0 (or 1) if denominator is O

— Other functions: sin, cos, exp, log, abs, ...

Domain Specific functions: e.g., image processing operators

14



Sufficiency and Closure

Selection of the functions and terminals is critical to success

The terminal set and the function set should be selected to
satisfy the requirements of sufficiency and closure

Sufficiency: There must be some combination of terminals
and function symbols that can solve the problem

Closure: Any function can accept any input value returned
by any function (and any terminal)

— NB: “strongly-typed GP” violates this!

+

x>10 True False

15



Program Generation

For initializing a population, or performing
Maximum program size: the maximum depth of a tree

Depth: The depth of a node is the minimum number of
edges that must be traversed from the root of the tree to it

Depth O

(%) Depth 1

‘ * Depth 2

\x, (x| Depth 3

16



Program Generation

« There are several ways of generating programs: full, grow,
and ramped half-and-half :

« Full method:
— Functions are selected as the nodes of the program tree until a given

depth is reached
— Then terminals are selected to form the leaf nodes

— This ensures that full, entirely balanced trees are constructed

Chin o8

(a) full (b) grow

17



Program Generation

Grow method:

— Nodes are selected from both functions and terminals

— |f a terminal is selected, the branch with this terminal is terminated
and we move on to the next non-terminal branch in the tree

Ramped half-and-half method:

— Both the full and grow methods are combined

— Half of the population are created by using the grow method and the
other half using the full method

Ramped half-and-half is widely used in

many GP systems
— Good balance of the benefits of each!

(b) grow

18



Fitness Evaluation

The fitness of a program generated by the evolutionary
process is evaluated according to the fitness function

The fithess function should give graded and continuous
feedback on how good a program is on the training set

The fithess function plays a very important role in the
evolutionary process and varies with the problem domain

Fithess cases: instances used for fithness evaluation

— Training cases: training instances used for learning
— Test cases: test instances used for performance evaluation -




Fithess Function Examples

Image matching: the number of matched pixels
Robot learning obstacle avoidance: the number of walls hit

for a robot

Classification task: the number of correctly classified

examples, error rate, or classification accuracy
GP-controlled gambling agent: the amount of money won

Artificial life application: the amount of food found and eaten

.29

iy )

v

N
9 ¢

f ./
¢




Parent Selection

Roulette wheel selection

qneel is rotate,,

(popularly used in GA) ‘¢¢- ~%
— The probability of being selected is f \
proportional to the fitness H i

— Assume fitness is maximized

. E&E?:‘:?:g:sﬁ":e';“ o Weakest individual

K-tournament selection (popularly —
Used In GP) \F/itlness Chromosome
Larger K, greedier? : | 2 —
Small K, greedier? : " e s parent

7 S K chromosomes

a X at random I A

2 E _ £ |

3 B '

6 R

2 T —_— T |

2 Y ‘

1 U

L1l



Genetic Operators in GP

Evolution proceeds by updating the initial population by the
use of genetic operators

— An initial population usually has very bad fithess

— Three main operators in GP: reproduction, mutation, and crossover

Reproduction:
— Simply copy a selected program to the new generation
— Allow good programs to survive
— Elitism: keep only the best one

or several

Parent 1 Child 1

New subtree

Mutation:

— Operate on a single selected program

— Remove a random subtree of the program
— Generate a new subtree in the same place

Mutation

22



Mutation in GP

Parent Gene

Child Gene
(X +(-3*"%2))"(7-tan(x;))

(%1#(-3"%2))"(7-9%%)

Mutation

Randomly chosen
mutation point

A}

% Randomly generated
.

sub-tree

23



Crossover in GP

« Swap a subtree of one parent
with a subtree of the other

Parent 1 Parent 2

« Put the two newly-formed
programs into the
next generation

(a) Two parents

Child 1 Child 2

(b) Two offspring generated —

Crossover

24



Crossover in GP

Parent Genes

Swap a subtree of one parent
Wlth a SUbtree Of the Other (X1#+(-3"x7))*(7-tan(x;))

Put the two newly-formed Q
programs into the o,
next generation

How is the tree depth used?
After we get offspring from
crossover/mutation, we

check the depth of offspring, C°S<7-tan<x )
if depth(new) > depth,
throw away; &
Otherwise, 7))
keep them; (%) (%)

25

Child Genes



A Basic GP algorithm

 [nitialise the population

* Repeat until the stopping criteria is met:
— Evaluate the fitness of each program in the current population
— Create an empty new population
— Repeat until the new population is full:

« Select programs in the current generation
(often tournament selection)

* Apply genetic operators to the selected programs to generate
offspring (e.g., 80% crossover, 15% mutation, 5% reproduction).

* Insert the children programs into the new generation.

« Qutput the best individual program in the population.

26



Tackling a Problem with GP

What terminals should be used in the program trees?
What functions are needed to represent the program tree?
What is the fithess function/measure?

Parameters values for controlling the evolutionary process:

e.g. what population size, tree depth and tournament size?
When to terminate a run?

Which genetic operators should be used, and how

frequently should they be applied?




Popularly used GP libraries

 DEAP in Python
https://github.com/DEAP/deap

« ECJin Java
https://cs.gmu.edu/~eclab/projects/ecj/

can check more details at src/ec/app/tutorial



https://github.com/DEAP/deap
https://cs.gmu.edu/~eclab/projects/ecj/

Summary
Overview of EC (GA) process

GP basics: representation, terminals, functions, fitness,

genetic operators, selection
GAs vs GP
Basic GP algorithm

Next lecture: GP regression and classification




