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Information

• Assignment 1 (due on week 5 - 27 March 2024)

• Extension requests (use the Submission system)

• Teaching evaluation (Heitor)

• Helpdesks starting from 2pm until 4pm (Thursday until next 

Wednesday)
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Search in AI
• Why searching is relevant in AI?
• An agent in an environment

• We are looking for a solution
to a problem and we would like
to know the steps (path) to reach
such solution. 

• Several complex real-world problems rely on search
– Robot navigation; University timetabling; Job shop scheduling; …

• Search is a critical step in several other AI techniques, such as 
machine learning and evolutionary computation. 
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Towers of Hanoi

• Puzzle that consists of three pegs and a set of disks of different sizes

• Disks are initially stacked on one peg in decreasing order of size, with 

the largest at the bottom and the smallest at the top

• The goal is to move the entire stack to another peg, one disk at a time, 

without placing a larger disk on top of a smaller one
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Maze

• Find a path from the Start position (S) to the End position (E)

• Can’t go through walls, can only move one position at a time

• The goal is to move the initial position final position, one step at a time
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Abstracting the problem

• Agent: entity that perceives the environment and acts upon 
that environment

• State: A configuration of the agent in its environment
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Abstracting the problem

• Agent: entity that perceives the environment and acts upon 
that environment

• State: A configuration of the agent in its environment

– Initial state
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Abstracting the problem

• Agent: entity that perceives the environment and acts upon 
that environment

• State: A configuration of the agent in its environment

– Initial state
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Abstracting the problem

• Agent: entity that perceives the environment and acts upon 
that environment

• State: A configuration of the agent in its environment

– Initial state

• Actions: Choices that can be made in a state

– Action(s): Given a state s, returns all possible actions from s
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Abstracting the problem

• Actions: Choices that can be made in a state
– Action(s): Given a state s, returns all possible actions from s

• Transition state: a description of the resulting state after 
action a is applied in state s
– Result(s, a) returns the state s’ after action a is performed on s
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Abstracting the problem

• Actions: Choices that can be made in a state
– Action(s): Given a state s, returns all possible actions from s

• Transition state: a description of the resulting state after 
action a is applied in state s
– Result(s, a) returns the state s’ after action a is performed on s

11

Result(                    ,      à T3 )  =



State space
• Agent, State, Actions, Transition state

• State space: set of all possible states reachable 
from the initial state by any sequence of actions. 

12… …
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State space
• Agent, State, Actions, Transition state

• State space: set of all possible states reachable 
from the initial state by any sequence of actions.

– Goal test: determines whether a state is a goal
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Graph abstraction



State space
• Agent, State, Actions, Transition state

• State space: set of all possible states reachable 
from the initial state by any sequence of actions.

– Goal test: determines whether a state is a goal

…

G

…
……

Often we are interested
 in the “optimal” solution

Graph abstraction



Path cost & Optimal solution

• Path cost: numerical cost associated with a path

• Optimal solution: a solution that has the lowest 
path cost among all solutions
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The “Frontier”

• Frontier: All the different options that we can 
explore next 

• Simple algorithm: 
– Starts by adding the initial state to the Frontier

– Repeat

• If the Frontier is empty, there is no solution

• Remove a node from the Frontier

• Goal test: Node is goal? Done!

• Expand node: add resulting nodes to the Frontier



• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier

Find a path from            to     

Example
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier

Find a path from            to     
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier

Find a path from            to     
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier

Find a path from            to     
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier

Find a path from            to     

Example
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Expand node: add resulting nodes to the Frontier

Find a path from            to     

Example
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• S is removed and A is added

• A is removed and S is added

• S is removed and A is added

• A is removed and S is added

• …

• …

• …

• …

What can go wrong?
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What about now? 

What can go wrong?

S
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• A is removed and B is added

• B is removed and C is added

• C is removed and A and D are added

• A is removed and B is added

• B is removed and C is added

• …

• …

• …

What can go wrong?

S
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• A is removed and B is added

• B is removed and C is added

• C is removed and A and D are added

• A is removed and B is added

• B is removed and C is added

• …

• …

We would like to avoid infinite loops! 

What can go wrong?
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• Explored set: maintains a list of already explored nodes

• This allow us to avoid cycles in our basic algorithm

Explored set



• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     

Example with Explored Set
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     

Example with Explored Set

S

A

G

CB

D

S G

Frontier

Explored Set

S

A



• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     

Example with Explored Set
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     

Example with Explored Set
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     

Example with Explored Set
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     

Example with Explored Set
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• Starts by adding the initial state to the Frontier

• Repeat
– If the Frontier is empty, there is no solution

– Remove a node from the Frontier

– Goal test: Node is goal? Done!

– Add removed to the Explored set

– Expand node: add nodes to the Frontier (if not in Explored)

Find a path from            to     

Example with Explored Set
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• How we explore the frontier matters!

• There are classical approaches and their variations: 
– Depth-first Search (DFS): Stack (Last in, First out)

– Breadth-first Search (BFS): Queue (First in, First out)

• DFS variants
– Depth Limited Search (DLS)

– Iterative Deepening Search (IDS)

• BFS variants
– Uniform Cost Search

– Bidirectional Search

Search algorithms



DFS x BFS - Back to the Maze

• Find a path from the Start position (S) to the End position (E)

• Can’t go through walls, can only move one position at a time

• The goal is to move the initial position final position
40



DFS x BFS – Graph abstraction
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DFS example

42
* Explored Set not shown for simplicity; assuming nodes are added as follows: right, down, left, top. 



DFS example

43

Frontier

* Skipping the first trivial steps (i.e. only one path); assuming nodes are added as follows: right, down, left, top. 

k

Adding k to the Frontier



DFS example
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Frontier
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Adding z to the Frontier
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Top of the stack



DFS example
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Frontier

k

Removing z to the Frontier

z

Top of the stack
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/



DFS example
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* Skipping the first trivial steps (i.e. only one path)

We explore everything here before exploring 
from here



DFS example (graph view)
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DFS example (graph view)
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DFS example (graph view)
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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BFS example

61
* Explored Set not shown for simplicity; assuming nodes are added as follows: right, down, left, top. 



BFS example
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Frontier

* Skipping the first trivial steps (i.e. only one path); assuming nodes are added as follows: right, down, left, top. 

k

Adding k to the Frontier



BFS example
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BFS example
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Frontier

k

Adding z to the Frontier

z

Added to the back of the Queue



BFS example
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Adding h to the Frontier
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example
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BFS example

91

We did it! We removed a node from the Frontier and it was the Goal



• Completeness: Whether the strategy is guaranteed to find 

a solution when one exists. A complete search strategy will 
always find a solution if one exists

Assessing Search Strategies



• Completeness: Whether the strategy is guaranteed to find 

a solution when one exists. A complete search strategy will 
always find a solution if one exists

• Optimality: Whether the strategy finds the highest-quality 
solution when there are several solutions 

Assessing Search Strategies



• Completeness: Whether the strategy is guaranteed to find 

a solution when one exists. A complete search strategy will 
always find a solution if one exists

• Optimality: Whether the strategy finds the highest-quality 
solution when there are several solutions 

• Time complexity: the time it takes to find a solution

Assessing Search Strategies



• Completeness: Whether the strategy is guaranteed to find 

a solution when one exists. A complete search strategy will 
always find a solution if one exists

• Optimality: Whether the strategy finds the highest-quality 
solution when there are several solutions 

• Time complexity: the time it takes to find a solution

• Space complexity: the memory the strategy needs to 

perform the search

Assessing Search Strategies



• DFS is complete if the state space is finite

• DFS is not optimal

• In general, DFS is more efficient than BFS
– Time Complexity: In the worst case*, DFS can explore every node, 

resulting in a time complexity of O(bd), where b is the branching 
factor and d is the maximum depth. 

– Space Complexity: depends on the maximum depth of the state 

space. In the worst case, uses space proportional to the maximum 

depth m, so it is O(bm)

Depth-First Search Analysis



• BFS is complete even if the state space is infinite*

• BFS is optimal if not weighted, i.e. shallowest solution

• In general, BFS can be very expensive
– Time Complexity: Similar to DFS*, in the worst case BFS will explore 

all nodes, so O(bd). 

– Space Complexity: The space complexity of BFS is also O(bd) 

because it needs to keep track of all the nodes on the current level in 

memory, and the number of nodes at each level grows exponentially 

with the depth.

Breadth First Search Analysis



• Important! The time complexity of BFS is typically higher 

than that of DFS, especially if the branching factor is high 
and the goal node is located near the bottom of the state 
space. 

BFS vs DFS



• Important! The time complexity of BFS is typically higher 

than that of DFS, especially if the branching factor is high 
and the goal node is located near the bottom of the state 
space. 

• Why? BFS needs to explore all nodes at a given depth 
before moving on to the next depth, whereas DFS can 
quickly move down a path until it reaches a dead end (leaf)

BFS vs DFS



• Variant of DFS that limit the maximum depth during 
exploration 

• DLS is complete if the limit is greater than or equal to the 
depth of the shallowest solution node

• DLS is not optimal

• Disadvantage 1: it may not be able to find solutions that are 
deeper than the maximum depth limit, even if they exist

• Disadvantage 2: it may repeat the same path if the limit is not 
set correctly, leading to inefficiency

Depth Limited Search (DLS)



• Variant of DFS that limit the maximum depth during 
exploration 

• DLS is complete if the limit is greater than or equal to the 
depth of the shallowest solution node

• DLS is not optimal

• Disadvantage 1: it may not be able to find solutions that are 
deeper than the maximum depth limit, even if they exist

• Disadvantage 2: it may repeat the same path if the limit is not 
adequate (too low), leading to inefficiency

Depth Limited Search (DLS)



• Combines the benefits of BFS and DFS

• Repeatedly performs DFS with increasing depth limits

• IDS has the same time complexity as BFS (O(bd)), but its space 

complexity is closer to DFS (O(bd)) only stores current path

• IDS is complete and optimal (if path cost is non-decreasing with 

depth)

• IDS is useful when space is large and goal depth is unknown

Iterative Deepening Search (IDS)



• Combines the benefits of BFS and DFS

• Repeatedly performs DFS with increasing depth limits

• IDS has the same time complexity as BFS (O(bd)), but its space 

complexity is closer to DFS (O(bd)) only stores current path

• IDS is complete and optimal (if path cost is non-decreasing with 

depth)

• IDS is useful when space is large and goal depth is unknown

Iterative Deepening Search (IDS)

Try the maze example using IDS!



• One BFS from the initial state and one BFS from the goal

• The searches proceed until their frontiers meet in the middle.

• Time complexity: O(bd/2) 
• Space complexity: O(bd/2) 

• Issues? We need to know where is the goal state

Bidirectional Search

S E



• Behaves as BFS if the actions have the same cost (no weights) 

• Expand first nodes with lowest cost; Remember Dijkstra's algorithm? 

• Time complexity: O(bd) 
• Space complexity: O(bd) 

• Optimal if all costs are positive

Uniform Cost search
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• Behaves as BFS if the actions have the same cost (no weights) 

• Expand first nodes with lowest cost; Remember Dijkstra's algorithm? 

• Time complexity: O(bd) 
• Space complexity: O(bd) 

• Optimal if all costs are positive
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• Behaves as BFS if the actions have the same cost (no weights) 

• Expand first nodes with lowest cost; Remember Dijkstra's algorithm? 

• Time complexity: O(bd) 
• Space complexity: O(bd) 

• Optimal if all costs are positive

Uniform Cost search
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• Uninformed Search: The algorithm does not consider 

specific knowledge related to the problem
–  DFS, DLS, IDS, BFS, Bidirectional Search, Uniform Cost

• Informed Search: Exploit knowledge specific to the 
problem (e.g. Greedy BFS, A*)

Uninformed & Informed



• Uninformed Search: The algorithm does not consider 

specific knowledge related to the problem
–  DFS, DLS, IDS, BFS, Bidirectional Search

• Informed Search: Exploit knowledge specific to the 
problem (e.g. Greedy BFS, A*)

Uninformed & Informed

Question: What is the disadvantage of using an Explored Set? 



A heuristic func h(n) estimates the cheapest cost from node 
n to the goal

h(n) must be admissible, i.e. never overestimates the cost
– h(n) is defined by relaxing the problem

– E.g. Ignoring walls and using the Manhattan distance in a maze

Why/When do we need heuristics?
– When the search space (state space) is too large!

– Example: chess has a branching factor of 35… 

Informed Search



• Always expand node whose state appears to be closer to 

the goal state

• The data structure is a priority queue
– Priority is given by f(n), such that f(n) = h(n)

• Example: Route finding in a map

Greedy (Best First) Search



• Always expand node whose state appears to be closer to 

the goal state

• The data structure is a priority queue
– Priority is given by f(n), such that f(n) = h(n)

• Example: Route finding in a map

Greedy (Best First) Search

At each node, h(n) 
gives the estimated dist.

Initial state: Te Papa

Goal state: VuW

h(Te Papa) = straight line 
distance, e.g. 1km



• Actual path is longer (1.6km)

• h(n) informs the algorithm to avoid unnecessary actions: 
– Reaching Victoria Street (in Hamilton) during the search (DFS)

– Exploring the whole CBD first (BFS)

Greedy (Best First) Search

At each node, h(n) 
gives the estimated dist.

Initial state: Te Papa

Goal state: VuW

h(Te Papa) = straight line 
distance, e.g. 1km



h(z) = 8

h(k) = 6

• Which node should the algorithm explore next? 

Greedy (Best First) Search - Maze



• Not optimal and not complete! 

• May explore ‘false’ paths

• Time and Space Complexity: O(bm)

Crucial issue: Ignores the path cost g(n), which is the 
cost from the initial state up to node n

Greedy (Best First) Search - Maze



• Not optimal and not complete! 

• May explore ‘false’ paths

• Time and Space Complexity: O(bm)

Crucial issue: Ignores the path cost g(n), which is the 
cost from the initial state up to node n

Greedy (Best First) Search - Maze

Can you think of a Maze where this algorithm 
would explore a “false” path?  



Estimates the total path cost f(n)

• f(n) = g(n) + h(n)

• g(n): from the initial node to node n

• h(n): estimated cost of “relaxed” path from n to goal

f(n) represents the estimated cost of the cheapest 
solution through n 

A*



A* - maze



A* - maze

f(n) g(n) h(n)
a 4 2 2
b 6 2 4



A* - maze

f(n) g(n) h(n)
a 4 2 2
b 6 2 4
c 6 3 3



A* - maze

f(n) g(n) h(n)
a 4 2 2
b 6 2 4
c 6 3 3
d 6 3 3
g 6 4 2
f 8 4 4



A* - maze

f(n) g(n) h(n)
a 4 2 2
b 6 2 4
c 6 3 3
d 6 3 3
g 6 4 2
f 8 4 4
… … … …
o 10 7 3
m 12 6 6
p 12 8 4
q 12 8 4
u 12 8 4



A* - maze

f(n) g(n) h(n)
a 4 2 2
b 6 2 4
c 6 3 3
d 6 3 3
… … … …
m 12 6 6
p 12 8 4
… … … …
w 14 10 4
% 14 11 3
! 16 10 6
r 16 10 6
# 16 11 5



A* - maze

f(n) g(n) h(n)
a 4 2 2
b 6 2 4
… … … …
% 14 11 3
! 16 10 6
r 16 10 6
# 16 11 5
… … … …
* 14 13 1
E 14 14 0
! 16 10 6
r 16 10 6
# 16 11 5



Summary

• Search is an important part of several other algorithms

• Abstracting the problem is fundamental

• Selecting an appropriate Search algorithm

• Defining h(n) may not always be trivial

• We were focusing on finding the path from S to E

125



Coming up next…

• Search 2 (next lecture)

• History AI (Friday Tutorial) – Prof Mengjie Zhang

• Tip: Try out the Search algorithms! 
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