Fundamentals of Artificial Intelligence

COMP307/AIML420 Search 2

Dr. Heitor Murilo Gomes heitor.gomes@vuw.ac.nz http://www.heitorgomes.com

Information

• Assignment 1 (due on week 5 - 27 March 2024)

• Extension requests (use the Submission system)

• Teaching evaluation (Heitor)

 Helpdesks starting from 2pm until 4pm (Thursday until next Wednesday)

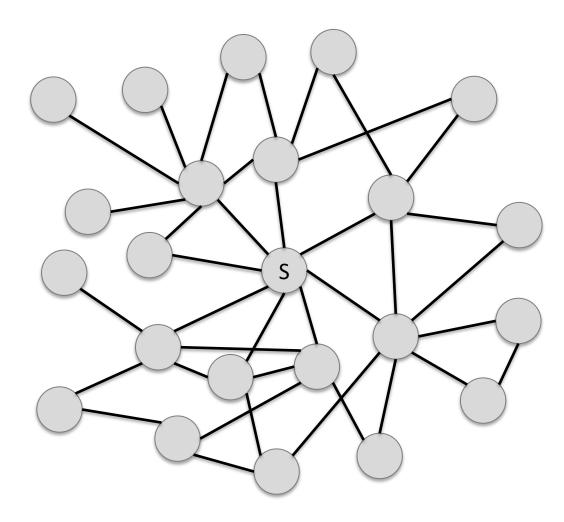
On the last lecture...

- Abstracting the problem is fundamental
- Selecting an appropriate Search algorithm
- **Defining** *h(n)* may not always be trivial
- Focus on finding the *path* from S to E
- See Chapter 3 [1]

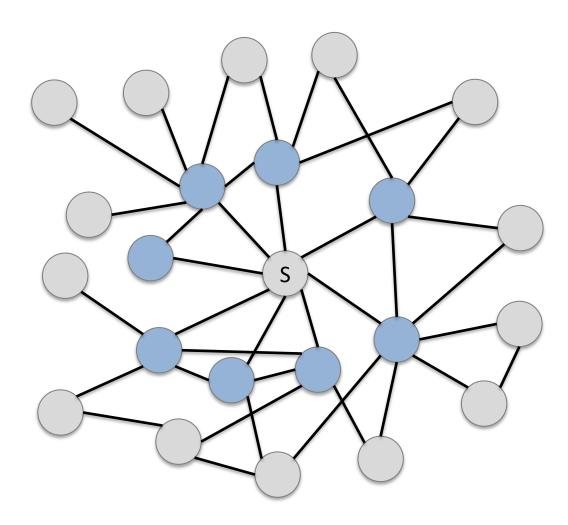
Beam search

- Extends BFS, instead of exploring all possible paths the exploration is limited (beam width)
- More efficient on large search spaces
- Not complete and not optimal ⊗
- Which paths should be explored?
 - Evaluation function, heuristic function (if possible) and random

Beam search: intuition

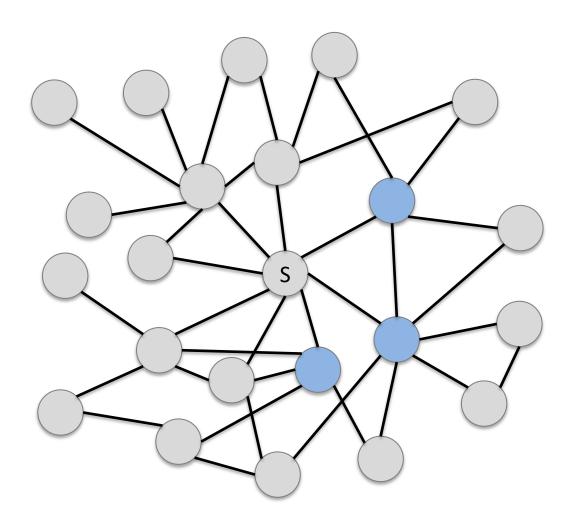


Beam search: intuition



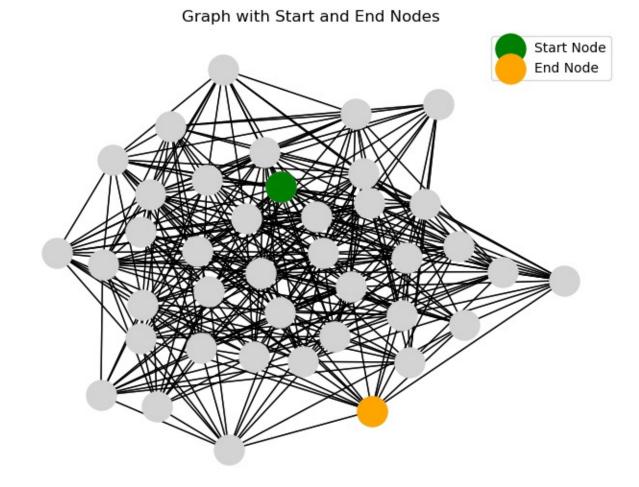
 BFS add all neighbours to the frontier

Beam search: intuition

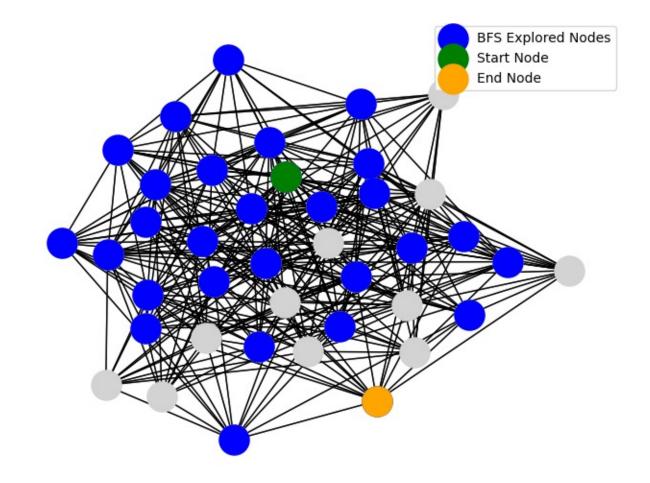


- BFS add all neighbours to the frontier
- Beam search add just some neighbours (beam width)

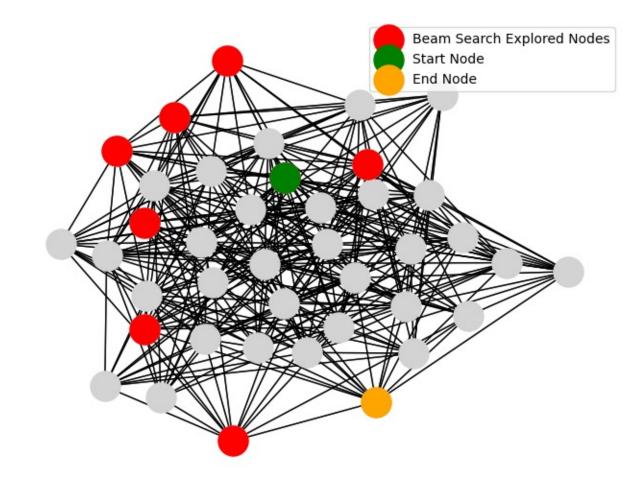
Beam search: example



Beam search: example



Beam search: example



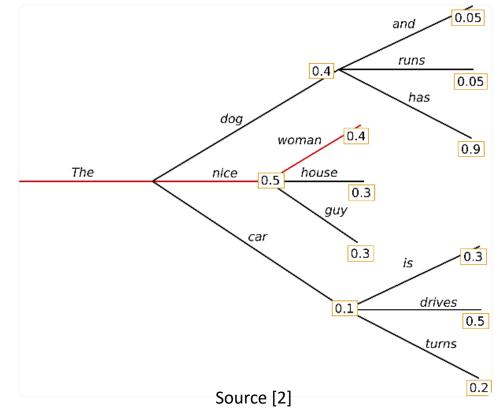
Beam search: applications

- Beam search allow us to maintain tractability in large state-spaces
- Practical applications includes:
 - text generation
 - machine translation
 - ...
- Let's say we want to generate a text sentence*

* Grossly overlooking some details so that we maintain sanity

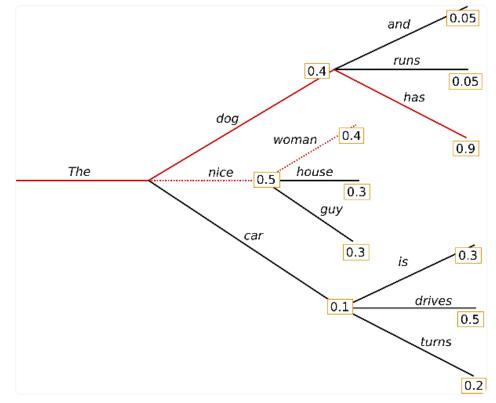
Beam search: Text generation

- One approach is to use Greedy search
 - Selects the word with the highest probability as the next word in the sentence



Beam search: Text generation

 Using Beam search, we reduce the risk of missing "hidden" high probability word sequences* (e.g. beam width = 2)



Source [2]

[2] https://huggingface.co/blog/how-to-generate

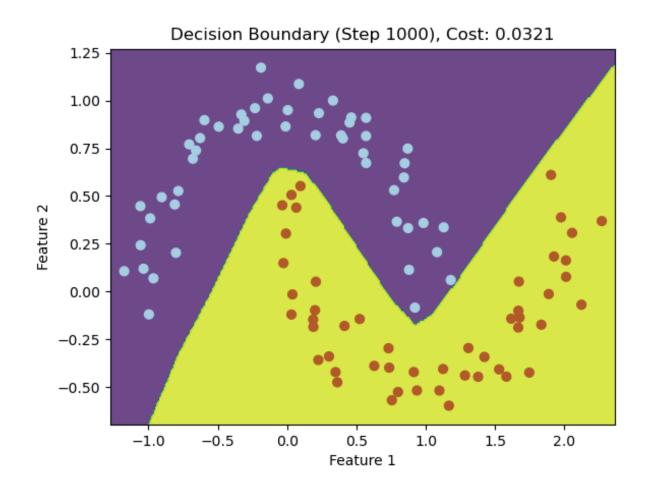
* The product of all the words prob. in the sequence ¹³

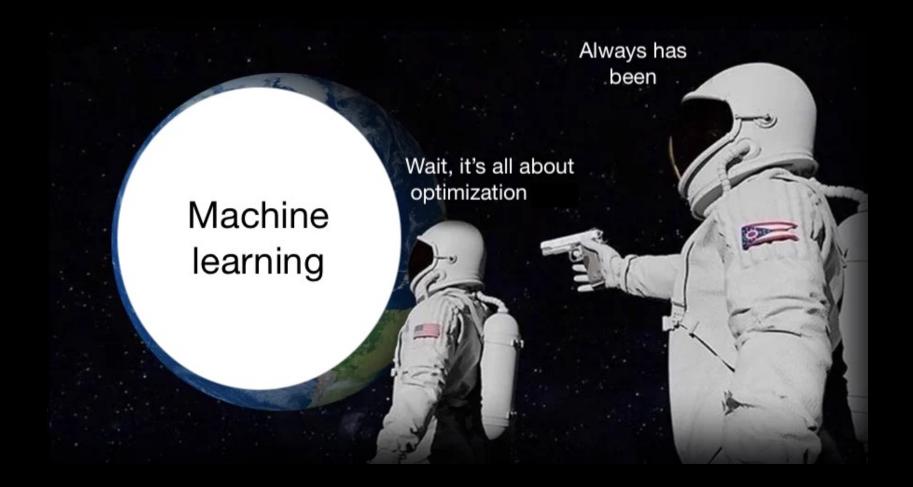
- Sometimes we don't care about the path only the solution
- We define a problem and iteratively attempt to optimize intermediary solutions.
- Examples:
 - Job scheduling: manufacturing, project management, or CPU scheduling → assign tasks to resources while optimizing criteria i.e. minimizing total time to complete all tasks or maximize resource utilization.
 - Circuit design: optimize the layout of components on a chip

- Examples:
 - Neural networks

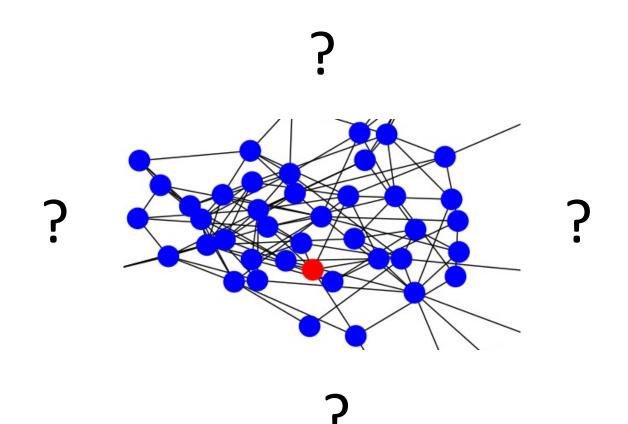


- Examples:
 - Neural networks

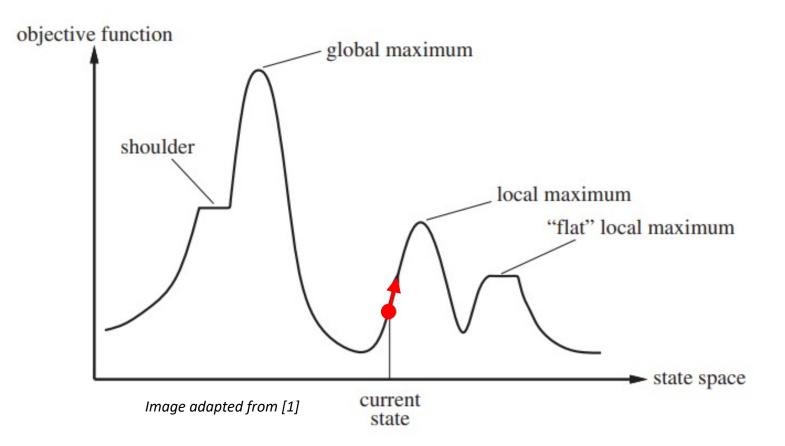




• Local search methods commonly operate on a single node (current state), and often can only move to its neighbors



- **Objective function**: <cost, loss, fitness, utility, ...> function
- State-space landscape: location and elevation



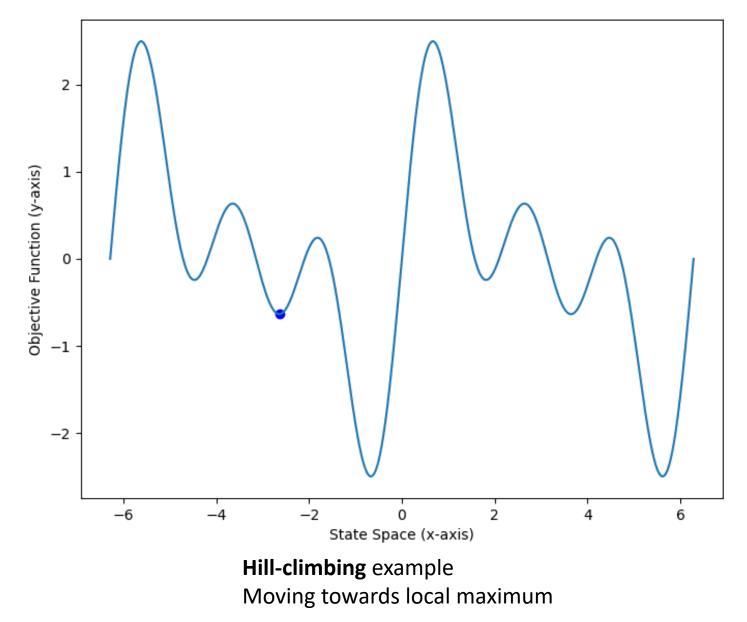
Hill-climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$ loop do $neighbor \leftarrow a$ highest-valued successor of currentif neighbor.VALUE \leq current.VALUE then return current.STATE $current \leftarrow neighbor$

Adapted from [1]

- Iteratively moves in the direction of increasing (or decreasing) value (uphill or downhill)
- Stop when no neighbor has a better value (higher or lower)

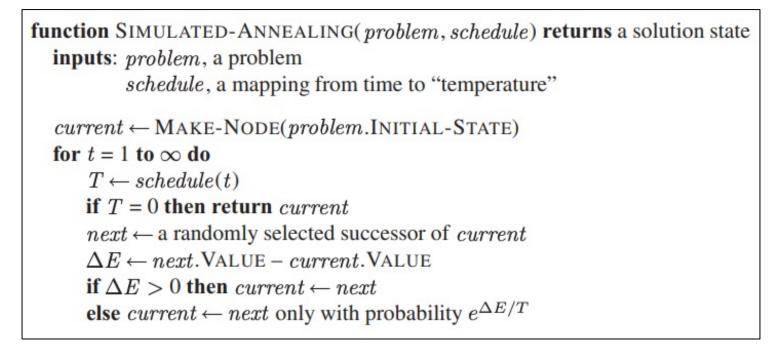
Hill-climbing



Simulated Annealing

- One drawbacks of Hill-climbing is that it cannot make downhill movements which can be beneficial in overall
- It can get "stuck" on local maximum
- Simulated annealing combines Hill-climbing with random walk
- This allow us to explore other parts of the state space

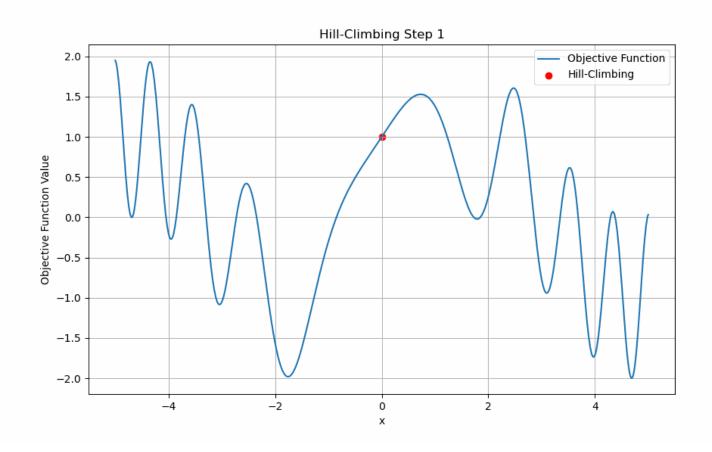
Simulated Annealing



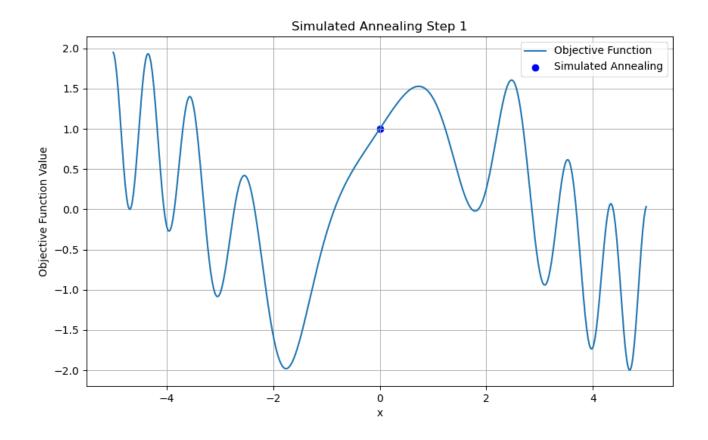
Adapted from [1]

- · Selects the next move randomly, if it improves, accept it
- Else, accept it with probability $e^{\Delta E/T}$

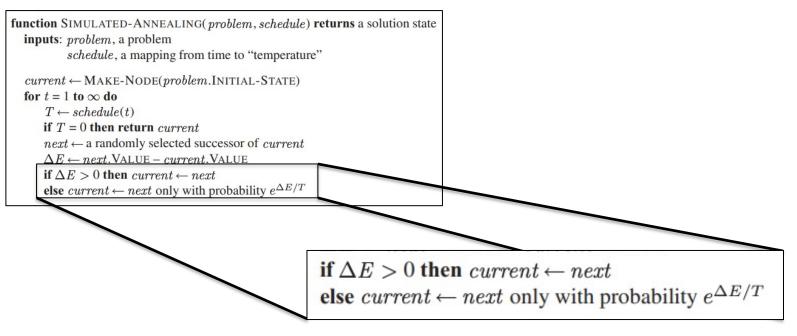
Hill-climbing



Simulated Annealing



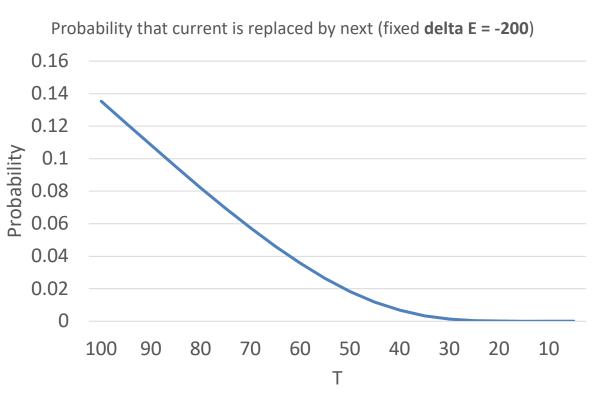
Simulated Annealing: some intuition



Simulated Annealing: some intuition

 $\begin{array}{l} \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \end{array}$

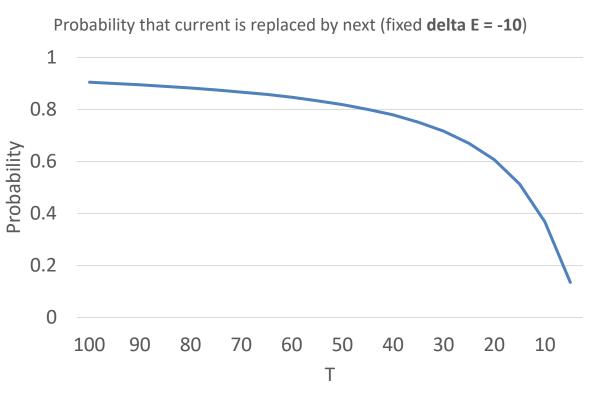
delta E	Т	delta E / T	e ^ (delta E / T)
-200	100	-2	0.135335283
-200	95	-2.1052632	0.121813614
-200	90	-2.2222222	0.108368023
-200	85	-2.3529412	0.095089077
-200	80	-2.5	0.082084999
-200	75	-2.6666667	0.069483451
-200	70	-2.8571429	0.057432619
-200	65	-3.0769231	0.046100888
-200	60	-3.3333333	0.035673993
-200	55	-3.6363636	0.026347981
-200	50	-4	0.018315639
-200	45	-4.444444	0.011743628
-200	40	-5	0.006737947
-200	35	-5.7142857	0.003298506
-200	30	-6.6666667	0.001272634
-200	25	-8	0.000335463
-200	20	-10	4.53999E-05
-200	15	-13.333333	1.6196E-06
-200	10	-20	2.06115E-09
-200	5	-40	4.24835E-18



Simulated Annealing: some intuition

 $\begin{array}{l} \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \end{array}$

delta E	Т	delta E / T	e ^ (delta E / T)
-10	100	-0.1	0.904837418
-10	95	-0.1052632	0.900087626
-10	90	-0.1111111	0.894839317
-10	85	-0.1176471	0.889009765
-10	80	-0.125	0.882496903
-10	75	-0.1333333	0.875173319
-10	70	-0.1428571	0.8668779
-10	65	-0.1538462	0.857403919
-10	60	-0.1666667	0.846481725
-10	55	-0.1818182	0.833752918
-10	50	-0.2	0.818730753
-10	45	-0.2222222	0.800737403
-10	40	-0.25	0.778800783
-10	35	-0.2857143	0.751477293
-10	30	-0.3333333	0.716531311
-10	25	-0.4	0.670320046
-10	20	-0.5	0.60653066
-10	15	-0.6666667	0.513417119
-10	10	-1	0.367879441
-10	5	-2	0.135335283



28

Local Beam Search

- Focus on the solution, not the path
- It works as a **parallel search**, where the nodes added to the frontier can be abandoned
- In practical terms, we keep a fixed number of "options" or "candidates" in the frontier to be explored next
- We can't backtrack

Summary

- See Chapter 4 (precisely 4.1 Local Search and Optimization problems) [1]
- What about Gradient Descent?!
- What about Genetic Algorithms?!
- Convex optimization, Dynamic programming, Branch and bound, ...

Coming up next...

- Probability theory and Neural Networks (next week)
- History AI (Friday Tutorial) Prof Mengjie Zhang