Fundamentals of Artificial Intelligence

VICTORIA UNIVERSITY OF

yosd WELLINGTON

N\~ TE HERENGA WAKA

COMP307/AIML420
Search 2

Dr. Heitor Murilo Gomes
heitor.gomes@vuw.ac.nz
http://www.heitorgomes.com

http://www.heitorgomes.com/

Information

Assignment 1 (due on week 5 - 27 March 2024)

Extension requests (use the Submission system)

Teaching evaluation (Heitor)

Helpdesks starting from 2pm until 4pm (Thursday until next

Wednesday)

On the last lecture...

Abstracting the problem is fundamental
Selecting an appropriate Search algorithm
Defining h(n) may not always be trivial
Focus on finding the path from S to E

See Chapter 3 [1]

[1] Russell, Stuart J., and Peter Norvig. Artificial intelligence a modern approach. 4th edition

Beam search
Extends BFS, instead of exploring all possible paths the
exploration is limited (beam width)
More efficient on large search spaces
Not complete and not optimal ®

Which paths should be explored?

— Evaluation function, heuristic function (if possible) and random

Beam search: intuition
O,
Q& ’ ‘ '0
‘.“‘:" 5

T

Beam search: intuition

« BFS add all

‘ ‘ neighbours to
‘ . ‘ ’ the frontier
A/

Beam search: intuition

 BFS add all
‘ neighbours to

neighbours

’ the frontier
MY
. “ ’ « Beam search
A .‘ ". add just some
‘a S S (beam width)
O ‘ <

Beam search: example

Graph with Start and End Nodes

Start Node
End Node

example

Beam search

BFS Explored Nodes

Start Node

End Node

Beam search: example

Beam Search Explored Nodes
Start Node
End Node

10

Beam search: applications

- Beam search allow us to maintain tractability in
large state-spaces

* Practical applications includes:

— text generation
— machine translation

» Let’s say we want to generate a text sentence®

* Grossly overlooking some details so that we maintain sanity

Beam search: Text generation

* One approach is to use Greedy search
— Selects the word with the highest probability as the next word in the

sentence
and 0
4

0

0.4r

has

dog

woman
nice house

0.5

0.3
guy
car

The

3

0.3 .

/
drives

turns

05
05
0.9
03
0.5

0
0.1

0.
Source [2] 2

[2] https://huggingface.co/blog/how-to-generate

Beam search: Text generation

» Using Beam search, we reduce the risk of missing “hidden”
high probability word sequences™ (e.g. beam width = 2)

-

and 0.05
runs
0.4
0.05
has
dog
0.4
womar, 0.9
The nice q.51_house
0.3
guy
car
0.3 3
/0.3
0.1 drives
0.5
turns
0.2
Source [2]

[2] https://huggingface.co/blog/how-to-generate * The product of all the words prob. in the sequence

Local Search & Optimization

Sometimes we don’t care about the path only the solution

We define a problem and iteratively attempt to optimize
intermediary solutions.

Examples:

— Job scheduling: manufacturing, project management, or CPU
scheduling = assign tasks to resources while optimizing criteria i.e.

minimizing total time to complete all tasks or maximize resource
utilization.

— Circuit design: optimize the layout of components on a chip

Local Search & Optimization

Examples:
— Neural networks

Decision Boundary (Step 5), Cost: 0.5723

1.25

1.00

0.75

0.50

0.25

Feature 2

0.00

-0.25

—0.50

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Feature 1

15

Local Search & Optimization

Examples:
— Neural networks

Decision Boundary (Step 1000), Cost: 0.0321

1.25

1.00

0.75

0.50

0.25

Feature 2

0.00

-0.25

—0.50

Feature 1

Local Search & Optimization

Always has
been

Wait, it’s all about
optimization

Machine
learning

17

ion

imizat

Local Search & Opt

* Local search methods commonly operate on a single node

(current state), and often can only move to its neighbors

Y, ‘
N
1'.

4

73
z

18

Local Search & Optimization

« Objective function: <cost, loss, fithess, utility, ...> function
- State-space landscape: location and elevation

objective function

)

P global maximum

shoulder

N

local maximum

“flat” local maximum

/

& State space

Image adapted from [1] current
state

[1] Russell, Stuart J., and Peter Norvig. Artificial intelligence a modern approach. 4th edition

19

Hill-climbing

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «— MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current «— neighbor

Adapted from [1]

+ lteratively moves in the direction of increasing
(or decreasing) value (uphill or downhill)

« Stop when no neighbor has a better value
(higher or lower)

[1] Russell, Stuart J., and Peter Norvig. Artificial intelligence a modern approach. 4th edition

20

Objective Function (y-axis)

Hill-climbing

-4 -2 0 2
State Space (x-axis)

Hill-climbing example
Moving towards local maximum

21

Simulated Annealing

One drawbacks of Hill-climbing is that it cannot make
downhill movements which can be beneficial in
overall

It can get “stuck” on local maximum

Simulated annealing combines Hill-climbing with
random walk

This allow us to explore other parts of the state space

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current «— MAKE-NODE(problem .INITIAL-STATE)
fort=1tooodo

T «— schedule(t)

if 7' =0 then return current

next «— a randomly selected successor of current

AFE «— next.VALUE — current.VALUE

if AE > 0 then current «— next

else current < nezt only with probability e2E/T

Adapted from [1]

« Selects the next move randomly, if it improves, accept it
» Else, accept it with probability e2£/T

23
[1] Russell, Stuart J., and Peter Norvig. Artificial intelligence a modern approach. 4th edition

Objective Function Value

Hill-climbing

Hill-Climbing Step 1

2.0 A

1.5 4

1.0 1

0.5 A

0.0 1

—0.5 A

—1.0 A

—1.5 A

—2.0 A

—— Objective Function
@ Hill-Climbing

24

Objective Function Value

Simulated Annealing

Simulated Annealing Step 1

2.0 A

1.5

1.0 A1

0.5 4

0.0 1

—0.5 A

—1.0 A

—1.5

—2.0 A

—— Objective Function
@ Simulated Annealing

25

Simulated Annealing: some intuition

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to “temperature”

current «— MAKE-NODE(problem .INITIAL-STATE)
for t =1 to oo do
T < schedule(t)
if 7' =0 then return current
next «+— a randomly selected successor of current
AFE « next.VALUE — current. VALUE

if AE > 0 then current < next

else current < next only with probability e2Z/T

~

if AE > 0 then current < next
else current < next only with probability e2E/T

26

Simulated Annealing: some intuition

deltaE T
-200 100
-200 95
-200 90
-200 85
-200 80
-200 75
-200 70
-200 65
-200 60
-200 55
-200 50
-200 45
-200 40
-200 35
-200 30
-200 25
-200 20
-200 15
-200 10
-200 5

deltaE/T
-2
-2.1052632
-2.2222222
-2.3529412
-2.5
-2.6666667
-2.8571429
-3.0769231
-3.3333333
-3.6363636
-4
-4.4444444
-5
-5.7142857
-6.6666667
-8
-10
-13.333333
-20
-40

if AE > 0 then current < next
else current < next only with probability e

AE/T

A (deltaE/T)

0.135335283
0.121813614
0.108368023
0.095089077
0.082084999
0.069483451
0.057432619
0.046100888
0.035673993
0.026347981
0.018315639
0.011743628
0.006737947
0.003298506
0.001272634
0.000335463
4.53999E-05
1.6196E-06
2.06115E-09
4.24835E-18

Probability that current is replaced by next (fixed delta E = -200)

0.16
0.14
0.12

O
[N

0.08
0.06
0.04
0.02

0

Probability

100 90

80

70

60

50
"

40

30

20

10

27

Simulated Annealing: some intuition

deltaE T

-10 100

-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10

95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

5

deltaE/T
-0.1
-0.1052632
-0.1111111
-0.1176471
-0.125
-0.1333333
-0.1428571
-0.1538462
-0.1666667
-0.1818182
-0.2
-0.2222222
-0.25
-0.2857143
-0.3333333
-0.4
-0.5
-0.6666667
-1
-2

if AE > 0 then current < next
else current < next only with probability e

AE/T

A (deltaE/T)

0.904837418
0.900087626
0.894839317
0.889009765
0.882496903
0.875173319
0.8668779
0.857403919
0.846481725
0.833752918
0.818730753
0.800737403
0.778800783
0.751477293
0.716531311
0.670320046
0.60653066
0.513417119
0.367879441
0.135335283

Probability that current is replaced by next (fixed delta E = -10)

1

0.8

Probability
o
o

o
~

©
N

100 90

80

70

60

50
"

40

30

20

10

28

Local Beam Search

Focus on the solution, not the path

It works as a parallel search, where the nodes added
to the frontier can be abandoned

In practical terms, we keep a fixed number of “options”
or “candidates” in the frontier to be explored next

We can’t backtrack

Summary

See Chapter 4 (precisely 4.1 Local Search and Optimization
problems) [1]

What about Gradient Descent?!
What about Genetic Algorithms?!

Convex optimization, Dynamic programming, Branch and
bound, ...

[1] Russell, Stuart J., and Peter Norvig. Artificial intelligence a modern approach. 4th edition

Coming up next...

* Probability theory and Neural Networks (next week)

« History Al (Friday Tutorial) — Prof Mengjie Zhang

