Fundamentals of Artificial Intelligence

VICTORIA UNIVERSITY OF WELLINGTON TE HERENGA WAKA

COMP307/AIML420

Search 2

Dr. Heitor Murilo Gomes
heitor.gomes@vuw.ac.nz
http://www.heitorgomes.com

Information

- Assignment 1 (due on week 5-27 March 2024)
- Extension requests (use the Submission system)
- Teaching evaluation (Heitor)
- Helpdesks starting from 2pm until 4pm (Thursday until next Wednesday)

On the last lecture...

- Abstracting the problem is fundamental
- Selecting an appropriate Search algorithm
- Defining $h(n)$ may not always be trivial
- Focus on finding the path from S to E
- See Chapter 3 [1]
[1] Russell, Stuart J., and Peter Norvig. Artificial intelligence a modern approach. 4th edition

Beam search

- Extends BFS, instead of exploring all possible paths the exploration is limited (beam width)
- More efficient on large search spaces
- Not complete and not optimal ${ }^{*}$
- Which paths should be explored?
- Evaluation function, heuristic function (if possible) and random

Beam search: intuition

Beam search: intuition

- BFS add all neighbours to the frontier

Beam search: intuition

- BFS add all neighbours to the frontier
- Beam search add just some neighbours (beam width)

Beam search: example

Graph with Start and End Nodes

Beam search: example

Beam search: example

Beam search: applications

- Beam search allow us to maintain tractability in large state-spaces
- Practical applications includes:
- text generation
- machine translation
- Let's say we want to generate a text sentence*

Beam search: Text generation

- One approach is to use Greedy search
- Selects the word with the highest probability as the next word in the sentence

Beam search: Text generation

- Using Beam search, we reduce the risk of missing "hidden" high probability word sequences* (e.g. beam width $=2$)

Source [2]

Local Search \& Optimization

- Sometimes we don't care about the path only the solution
- We define a problem and iteratively attempt to optimize intermediary solutions.
- Examples:
- Job scheduling: manufacturing, project management, or CPU scheduling \rightarrow assign tasks to resources while optimizing criteria i.e. minimizing total time to complete all tasks or maximize resource utilization.
- Circuit design: optimize the layout of components on a chip

Local Search \& Optimization

- Examples:
- Neural networks

Local Search \& Optimization

- Examples:
- Neural networks

Local Search \& Optimization

Local Search \& Optimization

- Local search methods commonly operate on a single node (current state), and often can only move to its neighbors

Local Search \& Optimization

- Objective function: <cost, loss, fitness, utility, ...> function
- State-space landscape: location and elevation

Hill-climbing

function Hill-CLImbing (problem) returns a state that is a local maximum

```
current }\leftarrow\mathrm{ MAKE-NODE(problem.InITIAL-STATE)
loop do
    neighbor }\leftarrow\mathrm{ a highest-valued successor of current
    if neighbor.VALUE }\leq\mathrm{ current.VALUE then return current.STATE
    current }\leftarrow\mathrm{ neighbor
```

- Iteratively moves in the direction of increasing (or decreasing) value (uphill or downhill)
- Stop when no neighbor has a better value (higher or lower)

Hill-climbing

Simulated Annealing

- One drawbacks of Hill-climbing is that it cannot make downhill movements which can be beneficial in overall
- It can get "stuck" on local maximum
- Simulated annealing combines Hill-climbing with random walk
- This allow us to explore other parts of the state space

Simulated Annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
            schedule, a mapping from time to "temperature"
    current }\leftarrow\mathrm{ MAKE-NODE(problem.InITIAL-STATE)
    for }t=1\mathrm{ to }\infty\mathrm{ do
    T}\leftarrow\mathrm{ schedule(t)
    if T=0 then return current
    next }\leftarrow\mathrm{ a randomly selected successor of current
    \DeltaE\leftarrownext.VALUE - current.VALUE
    if }\DeltaE>0\mathrm{ then current }\leftarrow\mathrm{ next
    else current }\leftarrownext only with probability e 五/T
```

- Selects the next move randomly, if it improves, accept it
- Else, accept it with probability $e^{\Delta E / T}$

Hill-climbing

Hill-Climbing Step 1

Simulated Annealing

Simulated Annealing Step 1

Simulated Annealing: some intuition

Simulated Annealing: some intuition

> if $\Delta E>0$ then current \leftarrow next else current \leftarrow next only with probability $e^{\Delta E / T}$

delta E T	delta E/T	$e^{\wedge}($ delta E / T)	
-200	100	-2	0.135335283
-200	95	-2.1052632	0.121813614
-200	90	-2.2222222	0.108368023
-200	85	-2.3529412	0.095089077
-200	80	-2.5	0.082084999
-200	75	-2.6666667	0.069483451
-200	70	-2.8571429	0.057432619
-200	65	-3.0769231	0.046100888
-200	60	-3.3333333	0.035673993
-200	55	-3.6363636	0.026347981
-200	50	-4	0.018315639
-200	45	-4.4444444	0.011743628
-200	40	-5	0.006737947
-200	35	-5.7142857	0.003298506
-200	30	-6.6666667	0.001272634
-200	25	-8	0.000335463
-200	20	-10	$4.53999 E-05$
-200	15	-13.333333	$1.6196 \mathrm{E}-06$
-200	10	-20	$2.06115 \mathrm{E}-09$
-200	5	-40	$4.24835 \mathrm{E}-18$

Simulated Annealing: some intuition

> if $\Delta E>0$ then current \leftarrow next
> else current \leftarrow next only with probability $e^{\Delta E / T}$

delta E	delta E/T	$e^{\wedge}($ delta E / T)	
-10	100	-0.1	0.904837418
-10	95	-0.1052632	0.900087626
-10	90	-0.1111111	0.894839317
-10	85	-0.1176471	0.889009765
-10	80	-0.125	0.882496903
-10	75	-0.1333333	0.875173319
-10	70	-0.1428571	0.8668779
-10	65	-0.1538462	0.857403919
-10	60	-0.1666667	0.846481725
-10	55	-0.1818182	0.833752918
-10	50	-0.2	0.818730753
-10	45	-0.2222222	0.800737403
-10	40	-0.25	0.778800783
-10	35	-0.2857143	0.751477293
-10	30	-0.3333333	0.716531311
-10	25	-0.4	0.670320046
-10	20	-0.5	0.60653066
-10	15	-0.6666667	0.513417119
-10	10	-1	0.367879441
-10	5	-2	0.135335283

Local Beam Search

- Focus on the solution, not the path
- It works as a parallel search, where the nodes added to the frontier can be abandoned
- In practical terms, we keep a fixed number of "options" or "candidates" in the frontier to be explored next
- We can’t backtrack

Summary

- See Chapter 4 (precisely 4.1 Local Search and Optimization problems) [1]
- What about Gradient Descent?!
- What about Genetic Algorithms?!
- Convex optimization, Dynamic programming, Branch and bound, ...

Coming up next...

- Probability theory and Neural Networks (next week)
- History AI (Friday Tutorial) - Prof Mengjie Zhang

