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Reasoning under uncertainty

• Medical diagnosis: Medical Doctors often need to make diagnoses 

based on incomplete information and uncertain test results. 

• Weather forecasting: Meteorologists use complex models to provide 

probabilities of different weather outcomes

• Financial decision making: Investors often need to make decisions 

based on uncertain market conditions and future projections
– The quants use lots of probability theory

• Machine learning: Most new learning algorithms are based on 

probability theory. Many directly output probabilities.
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https://www.investopedia.com/articles/financialcareers/08/quants-quantitative-analyst.asp


Uncertainty
• In most practical problems, there are unknown or not precisely known things

• Classes of uncertainty (in practice not so important)
– Aleatoric (AKA statistical) uncertainty: inherent randomness or variability:

• Quantum mechanics

• Natural disasters
• Geopolitical uncertainty

– Epistemic uncertainty: results from a lack of knowledge:
• Model parameters that are not precisely known
• Finite-element computation of a tsunami

• Uncertainty plays a fundamental role in AI

• Probability theory: a mathematical framework for quantifying uncertainty framework for 

modeling and quantifying uncertainty
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Belief about Propositions* / Events
• Instead of evaluating the truth or falsehood of a proposition, reason 

about the degree of belief that a proposition or event is true or false

• For each primitive proposition or event, attach a degree of belief to the 

sentence

• Probability theory provides a formal framework for manipulating these 

degrees of belief

• Example propositions / events
– It will rain tomorrow

– One possible prediction from a classification model (“it is a crow”)
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* Proposition: a statement that expresses a fact or a judgment that is either true or false.



Belief about Propositions* / Events

• Instead of evaluating the truth or falsehood of a proposition, reason 

about the degree of belief that a proposition or event is true or false

• To each primitive proposition or event, attach a degree of belief

• Probability theory provides a formal framework for manipulating these 

degrees of belief

• Example propositions / events
– It will rain tomorrow

– A prediction choice from a classification model

                                                                “it is a crow”
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* Proposition: a statement that expresses a fact or a judgment that is either true or false.

crow

magpie



Probability
• Given a proposition 𝐴,  where 𝐴 is either true or false (binary)

– The probability that 𝐴 is true is written as 𝑃 𝐴
– 0 ≤ 𝑃 𝐴 ≤ 1

• Sample space: set of experiment outcomes
• Event: set of one or more experiment outcomes
• Random variable (RV): formally a function mapping outcomes to numerical values
• Forms of propositions:

– Event  (happens) - one of the corresponding set of experiment outcomes happens
– random variable = specific numerical value 

• Probability that proposition 𝑋	 = 	𝑥	is true  is  written as 𝑃(𝑋 = 𝑥), and sometimes as 𝑝!(𝑥)

• Example for weather:
– Sample space: {𝑟𝑎𝑖𝑛𝑦, 𝑠𝑢𝑛𝑛𝑦, 𝑐𝑙𝑜𝑢𝑑𝑦, 𝑜𝑡ℎ𝑒𝑟}
– Events/Propositions: {rainy}, {rainy or cloudy}, {rainy or cloudy or other}
– Random variable 𝑿: rainy → 1, sunny → 2, cloudy → 3, other → 4 
– Random variable 𝒀: rainy → 1, sunny → 2, cloudy → 1, other → 3 
– 𝑷 𝒔𝒖𝒏𝒏𝒚	𝒐𝒓	𝒄𝒍𝒐𝒖𝒅𝒚 = 𝟎. 𝟓: probability weather will be sunny or cloudy is 50%.

• What is the sample space of the outcome of a die?
– Here we can use random variable = experiment outcome (RV is identity map)
– Example proposition: random variable = 3 (the RV takes the value 3,  𝑋 = 3)
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Probability

• Notation
– AND: 𝑨⋂𝑩. The probability that both 𝑨	and 𝑩	are true: 𝑃(𝐴⋂𝐵)

• Sometimes written as 𝑨 ∧ 𝑩
– OR: 𝑨⋃𝑩. The probability that either 𝑨	or 𝑩	is true: 𝑃(𝐴⋃𝐵)

• Sometimes written as 𝑨 ∨ 𝑩
– NOT: ¬𝑨. The probability that 𝑨 is false (¬𝑨 is true): 𝑃(¬𝐴)

• Axioms of probability theory (Kolmogorov)
– 𝑷(𝑨) 	≥ 𝟎
– ∑𝑨∈𝛀𝑷(𝑨) = 𝟏, where 𝛀 is the sample space
– 𝑷 𝑨	⋃𝑩⋃𝑪⋯ = 𝑷 𝑨 + 𝑷 𝑩 + 𝑷 𝑪 +⋯, for mutually exclusive 

events 𝐴, 𝐵, 𝐶,⋯	
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Example: Catan

9Settlers of Catan is a registered trademark of Catan GmbH. For more information, visit https://www.catan.com/

https://en.wikipedia.org/wiki/Catan
https://www.catan.com/


Example 1
• If we roll two fair dice, what is the probability that the sum of 

their outcomes is 11?
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Dice1 Dice2 Sum

1 1 2

1 2 3

1 3 4

1 4 5

1 5 6

1 6 7

… … …

6 5 11

6 6 12



Example 1
• If we roll two fair dice, what is the probability that the sum of 
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Example 1
• If we roll two fair dice, what is the probability that the sum of 

their outcomes is 11?
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• Sample space contains 36 pairs
• 36 possible outcomes
• 2 outcomes (5,6) and (6,5) give the total 

number of 11
• 𝑃 𝑆𝑢𝑚 = 11 =

 𝑃(𝑑𝑖𝑒_1 = 5, 𝑑𝑖𝑒_2 = 6	⋃	𝑑𝑖𝑒_1 = 6, 𝑑𝑖𝑒_2 = 5) =
	𝑃(𝑑𝑖𝑒_1 = 5, 𝑑𝑖𝑒_2 = 6) 	+ 	𝑃(	𝑑𝑖𝑒_1 = 6, 𝑑𝑖𝑒_2 = 5) =
	2/36 = 1/18

Dice1 Dice2 Sum

1 1 2

1 2 3

1 3 4

1 4 5

1 5 6

1 6 7

… … …

6 5 11

6 6 12



Example 2
• If we roll two fair dice, what is the most probable value 

obtained when we sum their outcomes?
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Dice1 Dice2 Sum

1 1 2

1 2 3

1 3 4

1 4 5

1 5 6

1 6 7

2 1 3

… … …

6 6 12

?



Example 2
• If we roll two fair dice, what is the most probable value 

obtained when we sum their outcomes?
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Dice1 Dice2 Sum

1 1 2

1 2 3

1 3 4

1 4 5

1 5 6

1 6 7

2 1 3

… … …

6 6 12

?
Dice1

1 2 3 4 5 6

Dice2

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12



Example 2
• If we roll two fair dice, what is the most probable value 

obtained when we sum their outcomes?
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Dice1 Dice2 Sum

1 1 2

1 2 3

1 3 4

1 4 5

1 5 6

1 6 7

2 1 3

… … …

6 6 12

?
Dice1

1 2 3 4 5 6

Dice2

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

𝑃 𝑆𝑢𝑚 = 7  = 6/36 = 1/6



Unconditional/Conditional/Joint Probability

• Unconditional/Prior probability: degrees of belief in 
propositions in the absence of any other information
– Example 𝑃 𝑆𝑢𝑚 = 11

• Conditional/Posterior probability: degrees of belief in 
propositions given other information (evidence)
– 𝑃 𝐴	 𝐵): the conditional probability that 𝐴 is true given that 𝐵 is true
– Example 𝑃 𝑆𝑢𝑚 = 11	 𝐷𝑖𝑒$ = 6), the conditional probability that the 

total number is 11 given that the first dice outcome is 6

• Joint probability 𝑃 𝐴, 𝐵 ∷= 𝑃 𝐴⋂𝐵 : the probability that 
𝐴 is true and 𝐵 is true
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Example
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Circle Square Triangle

Blue

White

Shape

Colour

A sample space; in this example all 
outcomes have equal probability



Example

19

Circle Square Triangle

Blue 4 2 3

White 3 3 3

Shape

Colour 9

9

7 5 6 18

• P(Blue, Circle) = 4 / 18
• P(White, Square) = 3 / 18
• P(Circle) = 7 / 18
• P(Circle | Blue) = 4 / 9
• P(Blue | Triangle) = 3 / 6
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White 3 3 3
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Product Rule
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𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

• Check the propositions
– Simultaneously: P(A, B)

– One by one: P(B) * P(A | B) or P(A) * P(B | A)

• Note that the product rule also means that

    𝑃 𝐵 𝐴	 = 	𝑃 𝐴 𝐵 ∗ 	𝑃(𝐵)/𝑃(𝐴)



Example
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𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

Circle Square Triangle

Blue 4 2 3

White 3 3 3

Shape

Colour 9

9

7 5 6 18

• P(Blue, Circle) = 4 / 18 • P(Blue) = 9 / 18
• P(Circle | Blue) = 4 / 9

• P(Circle) = 7 / 18
• P(Blue | Circle) = 4 / 7



Law of Total Probability and Normalisation Rule
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• Law of total probability: the probability that a random variable 
takes a certain value the sum of the joint probability of other 
variables over their values:

𝑃 𝑋 = 𝑥 = %
"∈$

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

• The normalisation rule:  the probabilities of all values a random 
variable can take sums to one:

∑% 𝑃(𝑋 = 𝑥) = 1 

%
%

𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) = 1

Law%20of%20total%20probability


Independence
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• The product rule: P(A, B) = P(B) * P(A | B) = P(A) * P(B | A)
• If A and B are independent (𝐴 ⊥ 𝐵) to each other, then

– P(A | B) = P(A)
– P(B | A) = P(B)
– P(A, B) = P(A) * P(B)

• Flip coins twice, flip1 and flip2 are independent
• Weather and crop yield are dependent



Independent or Dependent?

• Rolling a die and flipping a coin?

• Flipping a coin twice?

• Picking colored balls from a bag without replacement?

• Medical diagnoses for brothers?

• A customer and the purchase of a product?
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Summary

• Uncertainty is present in almost every worthwhile 

problem/decision

• Probability theory can be used to quantify and find 

relations for uncertainty

• There are many online resources, examples:

– Khan academy

– A lecture at the University of Chicago (first few slides discuss 

frequentist vs Bayesian; we use Bayesian view)
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https://www.khanacademy.org/math/statistics-probability/probability-library
https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L0708.pdf

