COMP307/AIML420 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Reasoning under uncertainty: Probability Basics

Outline

1. Introduction
2. Probability basics
3. Product Rule
4. Sum Rule
5. Normalisation Rule
6. Independence

Reasoning under uncertainty

- Medical diagnosis: Medical Doctors often need to make diagnoses based on incomplete information and uncertain test results.
- Weather forecasting: Meteorologists use complex models to provide probabilities of different weather outcomes
- Financial decision making: Investors often need to make decisions based on uncertain market conditions and future projections
- The quants use lots of probability theory
- Machine learning: Most new learning algorithms are based on probability theory. Many directly output probabilities.

Uncertainty

- In most practical problems, there are unknown or not precisely known things
- Classes of uncertainty (in practice not so important)
- Aleatoric (AKA statistical) uncertainty: inherent randomness or variability:
- Quantum mechanics
- Natural disasters
- Geopolitical uncertainty
- Epistemic uncertainty: results from a lack of knowledge:
- Model parameters that are not precisely known
- Finite-element computation of a tsunami
- Uncertainty plays a fundamental role in AI
- Probability theory: a mathematical framework for quantifying uncertainty

Belief about Propositions* / Events

- Instead of evaluating the truth or falsehood of a proposition, reason about the degree of belief that a proposition or event is true or false
- For each primitive proposition or event, attach a degree of belief to the sentence
- Probability theory provides a formal framework for manipulating these degrees of belief
- Example propositions / events
- It will rain tomorrow
- One possible prediction from a classification model ("it is a crow")
* Proposition: a statement that expresses a fact or a judgment that is either true or false.

Belief about Propositions* / Events

- Instead of evaluating the truth or falsehood of a proposition, reason about the degree of belief that a proposition or event is true or false
- To each primitive proposition or event, attach a degree of belief
- Probability theory provides a formal framework for manipulating these degrees of belief
- Example propositions / events
- It will rain tomorrow
- A prediction choice from a classification model
"it is a crow"

* Proposition: a statement that expresses a fact or a judgment that is either true or false.

Probability

- Given a proposition A, where A is either true or false (binary)
- The probability that A is true is written as $P(A)$
- $0 \leq P(A) \leq 1$
- Sample space: set of experiment outcomes
- Event: set of one or more experiment outcomes
- Random variable (RV): formally a function mapping outcomes to numerical values
- Forms of propositions:
- Event (happens) - one of the corresponding set of experiment outcomes happens
- random variable $=$ specific numerical value
- Probability that proposition $X=x$ is true is written as $P(X=x)$, and sometimes as $p_{X}(x)$
- Example for weather:
- Sample space: \{rainy, sunny, cloudy, other $\}$
- Events/Propositions: \{rainy\}, \{rainy or cloudy\}, \{rainy or cloudy or other\}
- Random variable X : rainy $\rightarrow 1$, sunny $\rightarrow 2$, cloudy $\rightarrow 3$, other $\rightarrow 4$
- Random variable Y : rainy $\rightarrow 1$, sunny $\rightarrow 2$, cloudy $\rightarrow 1$, other $\rightarrow 3$
$-\boldsymbol{P}($ sunny or cloudy $)=\mathbf{0 . 5}$: probability weather will be sunny or cloudy is 50%.
- What is the sample space of the outcome of a die?
- Here we can use random variable = experiment outcome (RV is identity map)

- Example proposition: random variable $=3$ (the RV takes the value 3, $X=3$)

Probability

- Notation
- AND: $\boldsymbol{A} \cap \boldsymbol{B}$. The probability that both \boldsymbol{A} and \boldsymbol{B} are true: $P(A \cap B)$
- Sometimes written as $\boldsymbol{A} \wedge \boldsymbol{B}$
- OR: $\boldsymbol{A} \cup \boldsymbol{B}$. The probability that either \boldsymbol{A} or \boldsymbol{B} is true: $P(A \cup B)$
- Sometimes written as $\boldsymbol{A} \vee \boldsymbol{B}$
- NOT: $\neg \boldsymbol{A}$. The probability that \boldsymbol{A} is false ($\neg \boldsymbol{A}$ is true): $P(\neg A)$
- Axioms of probability theory (Kolmogorov)
$-P(A) \geq 0$
$-\sum_{A \in \Omega} P(A)=1$, where Ω is the sample space
$-\boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B} \cup \boldsymbol{C} \cdots)=\boldsymbol{P}(\boldsymbol{A})+\boldsymbol{P}(\boldsymbol{B})+\boldsymbol{P}(\boldsymbol{C})+\cdots$, for mutually exclusive events A, B, C, \cdots

Example: Catan

Settlers of Catan is a registered trademark of Catan GmbH. For more information, visit https://www.catan.com/

Example 1

- If we roll two fair dice, what is the probability that the sum of their outcomes is 11 ?

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
\ldots	\ldots	\ldots
6	5	11
6	6	12

Example 1

- If we roll two fair dice, what is the probability that the sum of their outcomes is 11?

- 36 possible outcomes in total

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
\ldots	\ldots	\ldots
6	5	11
6	6	12

Example 1

- If we roll two fair dice, what is the probability that the sum of their outcomes is $11 ?$

- Sample space contains 36 pairs
- 36 possible outcomes
- 2 outcomes $(5,6)$ and $(6,5)$ give the total number of 11

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
\ldots	\ldots	\ldots
6	$\mathbf{5}$	$\mathbf{1 1}$
6	6	12

Example 1

- If we roll two fair dice, what is the probability that the sum of their outcomes is 11 ?

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
\ldots	\ldots	\ldots
6	5	11
6	6	12

- Sample space contains 36 pairs
- 36 possible outcomes
- 2 outcomes $(5,6)$ and $(6,5)$ give the total number of 11
- $\quad P($ Sum $=11)=$
$P\left(d i e _1=5\right.$, die_2 $=6 \cup$ die_1 $=6$, die_2 $\left.=5\right)=$
$P\left(d i e _1=5, d i e _2=6\right)+P\left(d i e_{-} 1=6, d i e _2=5\right)=$
$2 / 36=1 / 18$

Example 2

- If we roll two fair dice, what is the most probable value obtained when we sum their outcomes?

Example 2

- If we roll two fair dice, what is the most probable value obtained when we sum their outcomes?

	Dice1					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	2	3	4	5	6	7
$\mathbf{2}$	3	4	5	6	7	8
Dice2	$\mathbf{3}$	4	5	6	7	8
$\mathbf{4}$	9	9	7	8	9	10
$\mathbf{4}$	6	7	8	9	10	11
$\mathbf{6}$	7	8	9	10	11	12

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
2	1	3
\ldots	\ldots	\ldots
6	6	12

Example 2

- If we roll two fair dice, what is the most probable value obtained when we sum their outcomes?

	$$

$$
P(S u m=7)=6 / 36=1 / 6
$$

Unconditional/Conditional/Joint Probability

- Unconditional/Prior probability: degrees of belief in propositions in the absence of any other information
- Example $P(S u m=11)$
- Conditional/Posterior probability: degrees of belief in propositions given other information (evidence)
- $P(A \mid B)$: the conditional probability that A is true given that B is true
- Example $P\left(S u m=11 \mid\right.$ Die $\left._{1}=6\right)$, the conditional probability that the total number is 11 given that the first dice outcome is 6
- Joint probability $P(A, B)::=P(A \cap B)$: the probability that A is true and B is true

Example

A sample space; in this example all outcomes have equal probability

Shape

Colour | | Circle | Square | Triangle |
| :---: | :---: | :---: | :---: |
| | Blue | | |
| | | | |
| | White | | |
| | | | |
| | | | |

Example

Shape

	Circle	Square	Triangle	
Colour	Blue	4	2	3
9				
	White	3	3	3
9				

Example

Shape

Colour		Circle	Square	Triangle
	Blue	4	2	3
	White	3	3	3
		7	5	6

Example

Shape

Colour		Circle	Square	Triangle
	Blue	4	2	3
	White	3	3	3
		7	5	6

Example

Shape

Colour		Circle	Square	Triangle
	Blue	4	2	3
	White	3	3	3
		7	5	6

Example

- $P($ Blue, Circle) $=4 / 18$
- $P($ White, Square $)=3 / 18$
- P(Circle)

Shape

Example

- $P($ Blue, Circle $)=4 / 18$
- $\mathrm{P}($ White, Square $)=3$ / 18
- $P($ Circle $)=7 / 18$

Shape

Colour		Circle	Square	Triangle
	Blue	4	2	3
	White	3	3	3
		7	5	6

Example

- $\mathrm{P}($ Blue, Circle) $=4 / 18$
- P(White, Square) = 3 / 18
- $P($ Circle $)=7 / 18$
- P(Circle \| Blue)

Shape

Example

- $P($ Blue, Circle) $=4 / 18$
- $P($ White, Square $)=3 / 18$
- $P($ Circle $)=7 / 18$
- $P($ Circle | Blue) $=4 / 9$

Shape

Colour		Circle	Square	Triangle
	Blue	4	2	3
	White	3	3	3
		7	5	6

Example

- $P($ Blue, Circle $)=4 / 18$
- $P($ White, Square $)=3 / 18$
- $P($ Circle $)=7 / 18$
- $P($ Circle | Blue) $=4 / 9$
- P(Blue \| Triangle)

Shape

Colour		Circle	Square	Triangle
	Blue	4	2	3
	White	3	3	3
		7	5	6

Example

- $P($ Blue, Circle $)=4 / 18$
- $P($ White, Square $)=3 / 18$
- $P($ Circle $)=7 / 18$
- $P($ Circle | Blue) $=4 / 9$
- $P($ Blue \mid Triangle $)=3 / 6$

Shape

Colour		Circle	Square	Triangle
	Blue	4	2	3
	White	3	3	3
		7	5	6

Product Rule

$$
P(A, B)=P(B) * P(A \mid B)=P(A) * P(B \mid A)
$$

- Check the propositions
- Simultaneously: $\mathrm{P}(\mathrm{A}, \mathrm{B})$
- One by one: $P(B)$ * $P(A \mid B)$ or $P(A){ }^{*} P(B \mid A)$
- Note that the product rule also means that

$$
P(B \mid A)=P(A \mid B) * P(B) / P(A)
$$

Example

$$
P(A, B)=P(B) * P(A \mid B)=P(A) * P(B \mid A)
$$

Shape

		Circle	Square
Colour Triangle			
	Blue	4	2
9	3		
	White	3	3
9			

- $P($ Blue, Circle $)=4 / 18$
- $P($ Blue $)=9 / 18$
- $P($ Circle \mid Blue $)=4 / 9$
- $P($ Circle $)=7 / 18$
- P(Blue | Circle) = 4 / 7

Law of Total Probability and Normalisation Rule

- Law of total probability: the probability that a random variable takes a certain value the sum of the joint probability of other variables over their values:

$$
P(X=x)=\sum_{y \in \Omega} P(X=x, Y=y)
$$

- The normalisation rule: the probabilities of all values a random variable can take sums to one:

$$
\begin{gathered}
\sum_{x} P(X=x)=1 \\
\sum_{x} P(X=x \mid Y=y)=1
\end{gathered}
$$

Independence

- The product rule: $P(A, B)=P(B)$ * $P(A \mid B)=P(A)$ * $P(B \mid A)$
- If A and B are independent $(A \perp B)$ to each other, then
$-P(A \mid B)=P(A)$
$-P(B \mid A)=P(B)$
$-P(A, B)=P(A) * P(B)$
- Flip coins twice, flip1 and flip2 are independent
- Weather and crop yield are dependent

Independent or Dependent?

- Rolling a die and flipping a coin?
- Flipping a coin twice?
- Picking colored balls from a bag without replacement?
- Medical diagnoses for brothers?
- A customer and the purchase of a product?

Summary

- Uncertainty is present in almost every worthwhile problem/decision
- Probability theory can be used to quantify and find relations for uncertainty
- There are many online resources, examples:
- Khan academy
- A lecture at the University of Chicago (first few slides discuss frequentist vs Bayesian; we use Bayesian view)

