COMP307/AIML420 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Reasoning under uncertainty: Probability Basics

Outline

- 1. Introduction
- 2. Probability basics
- 3. Product Rule
- 4. Sum Rule
- 5. Normalisation Rule
- 6. Independence

Reasoning under uncertainty

- **Medical diagnosis**: Medical Doctors often need to make diagnoses based on **incomplete information** and **uncertain test** results.
- Weather forecasting: Meteorologists use complex models to provide probabilities of different weather outcomes
- Financial decision making: Investors often need to make decisions based on uncertain market conditions and future projections
 - The <u>quants</u> use lots of probability theory
- **Machine learning:** Most new learning algorithms are based on probability theory. Many directly output probabilities.

Uncertainty

- In most practical problems, there are **unknown** or **not precisely known** things
- Classes of uncertainty (in practice not so important)
 - Aleatoric (AKA statistical) uncertainty: inherent randomness or variability:
 - Quantum mechanics
 - Natural disasters
 - Geopolitical uncertainty
 - Epistemic uncertainty: results from a lack of knowledge:
 - Model parameters that are not precisely known
 - Finite-element computation of a tsunami
- Uncertainty plays a fundamental role in Al
- **Probability theory**: a mathematical framework for quantifying uncertainty

Belief about Propositions* / Events

- Instead of evaluating the truth or falsehood of a proposition, reason about the degree of belief that a proposition or event is true or false
- For each primitive proposition or event, attach a degree of belief to the sentence

- Probability theory provides a formal framework for manipulating these degrees of belief
- Example propositions / events
 - It will rain tomorrow
 - One possible prediction from a classification model ("it is a crow")

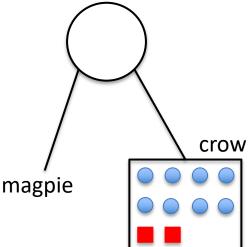
* Proposition: a statement that expresses a fact or a judgment that is either true or false.

Belief about Propositions* / Events

- Instead of evaluating the truth or falsehood of a proposition, reason about the degree of belief that a proposition or event is true or false
- To each primitive proposition or event, attach a **degree of belief**

- Probability theory provides a formal framework for manipulating these degrees of belief
- Example propositions / events
 - It will rain tomorrow
 - A prediction choice from a classification model

"it is a crow"



* **Proposition:** a statement that expresses a fact or a judgment that is either true or false.

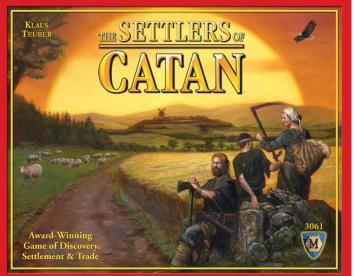
Probability

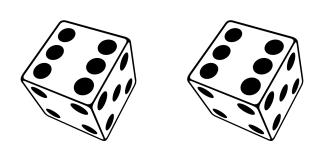
- Given a **proposition** *A*, where *A* is either true or false (binary)
 - The probability that A is true is written as P(A)
 - $\quad 0 \le P(A) \le 1$
- Sample space: set of experiment outcomes
- **Event**: set of one or more experiment outcomes
- **Random variable (RV)**: formally a function mapping outcomes to numerical values
- Forms of **propositions**:
 - **Event** (happens) one of the corresponding set of experiment outcomes happens
 - random variable = specific numerical value
 - Probability that proposition X = x is true is written as P(X = x), and sometimes as $p_X(x)$
- Example for weather:
 - **Sample space**: {*rainy*, *sunny*, *cloudy*, *other*}
 - Events/Propositions: {rainy}, {rainy or cloudy}, {rainy or cloudy or other}
 - **Random variable** *X*: rainy \rightarrow 1, sunny \rightarrow 2, cloudy \rightarrow 3, other \rightarrow 4
 - **Random variable** *Y*: rainy \rightarrow 1, sunny \rightarrow 2, cloudy \rightarrow 1, other \rightarrow 3
 - P(sunny or cloudy) = 0.5: probability weather will be sunny or cloudy is 50%.
- What is the sample space of the outcome of a die?
 - Here we can use random variable = experiment outcome (RV is identity map)
 - Example proposition: random variable = 3 (the RV takes the value 3, X = 3)

Probability

- Notation
 - **AND**: $A \cap B$. The probability that **both** A and B are true: $P(A \cap B)$
 - Sometimes written as $A \wedge B$
 - **OR**: $A \cup B$. The probability that either A or B is true: $P(A \cup B)$
 - Sometimes written as $A \lor B$
 - NOT: $\neg A$. The probability that *A* is false ($\neg A$ is true): $P(\neg A)$
- Axioms of probability theory (Kolmogorov)
 - $P(A) \geq 0$
 - $-\sum_{A\in\Omega} P(A) = 1$, where Ω is the sample space
 - $P(A \cup B \cup C \cdots) = P(A) + P(B) + P(C) + \cdots$, for mutually exclusive events A, B, C, \cdots

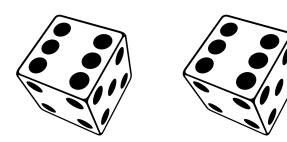
Example: Catan





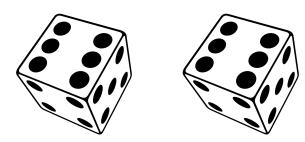
9

• If we roll two fair dice, what is the probability that the sum of their outcomes is 11?



Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
6	5	11
6	6	12

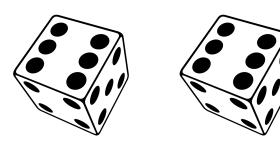
• If we roll two fair dice, what is the probability that the sum of their outcomes is 11?



• 36 possible outcomes in total

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
6	5	11
6	6	12

• If we roll two fair dice, what is the probability that the sum of their outcomes is 11?



- Sample space contains 36 pairs
- 36 possible outcomes
- 2 outcomes (5,6) and (6,5) give the total number of 11

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
6	5	11
6	6	12

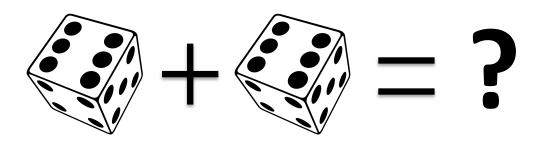
• If we roll two fair dice, what is the probability that the sum of their outcomes is 11?

- Sample space contains 36 pairs
- 36 possible outcomes
- 2 outcomes (5,6) and (6,5) give the total number of 11
- P(Sum = 11) =

 $\begin{array}{l} P(die_{1} = 5, die_{2} = 6 \cup die_{1} = 6, die_{2} = 5) = \\ P(die_{1} = 5, die_{2} = 6) + P(die_{1} = 6, die_{2} = 5) = \\ 2/36 = 1/18 \end{array}$

Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
6	5	11
6	6	12

• If we roll two fair dice, what is the most probable value obtained when we sum their outcomes?



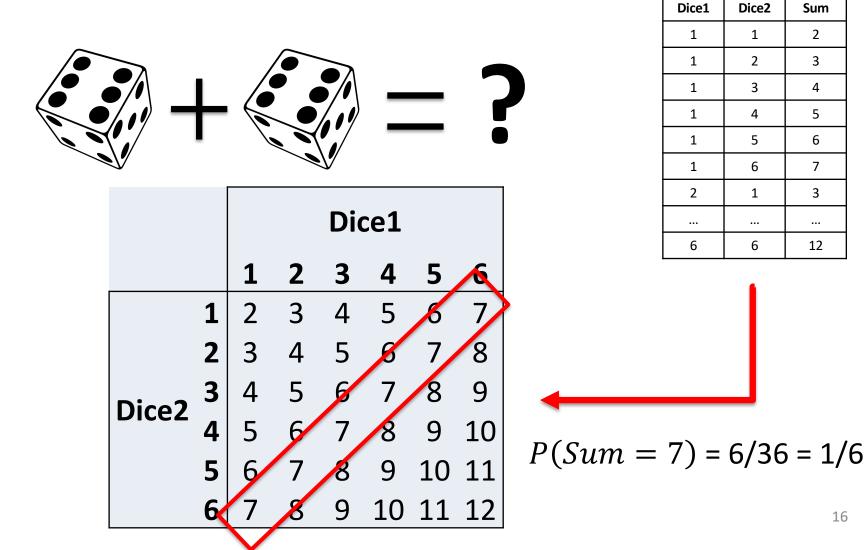
Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
2	1	3
6	6	12

• If we roll two fair dice, what is the most probable value obtained when we sum their outcomes?

-	┠							
				Dio	ce1			
		1	2	3	4	5	6	
	1	2	3	4	5	6	7	
	2	3	4	5	6	7	8	
Dice2	3	4	5	6	7	8	9	
DICCZ	4	5	6	7	8	9	10	
	5	6	7	8	9	10	11	
	6	7	8	9	10	11	12	

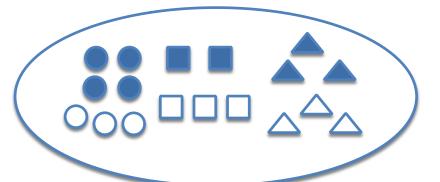
Dice1	Dice2	Sum
1	1	2
1	2	3
1	3	4
1	4	5
1	5	6
1	6	7
2	1	3
6	6	12

• If we roll two fair dice, what is the most probable value obtained when we sum their outcomes?



Unconditional/Conditional/Joint Probability

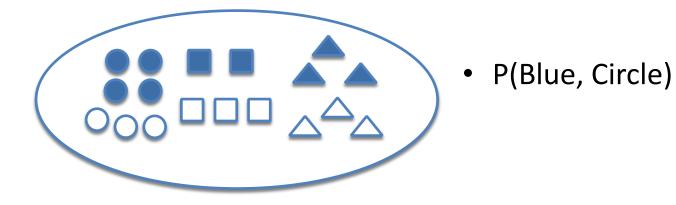
- Unconditional/Prior probability: degrees of belief in propositions in the absence of any other information
 - Example P(Sum = 11)
- Conditional/Posterior probability: degrees of belief in propositions given other information (evidence)
 - $P(A \mid B)$: the conditional probability that A is true given that B is true
 - Example $P(Sum = 11 | Die_1 = 6)$, the conditional probability that the total number is 11 given that the first dice outcome is 6
- Joint probability $P(A, B) ::= P(A \cap B)$: the probability that <u>A is true and B is true</u>



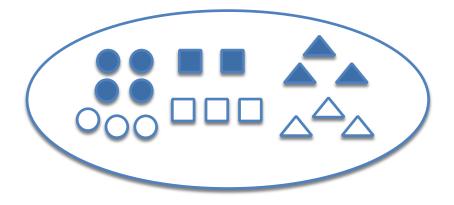
A sample space; in this example all outcomes have equal probability

Shape

		Circle	<mark>S</mark> quare	Triangle
Colour	Blue			
	White			



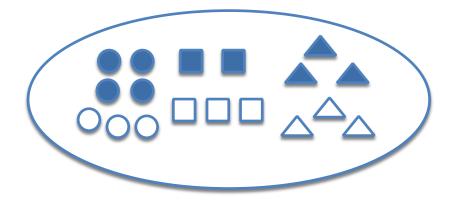
		Circle	<mark>S</mark> quare	Triangle	
Colour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



• P(Blue, Circle) = 4 / 18

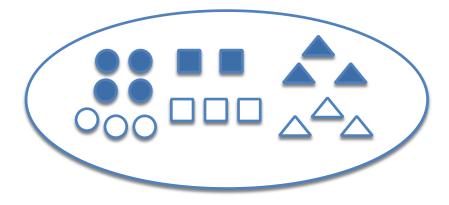
Shape

		Circle	<mark>S</mark> quare	Triangle	
C olour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



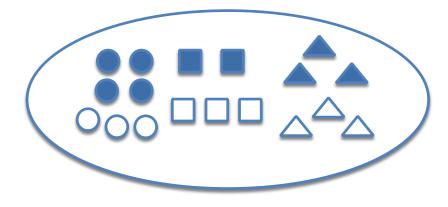
- P(Blue, Circle) = 4 / 18
- P(White, Square)

		Circle	Square	Triangle	
Colour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



- P(Blue, Circle) = 4 / 18
- P(White, Square) = 3 / 18

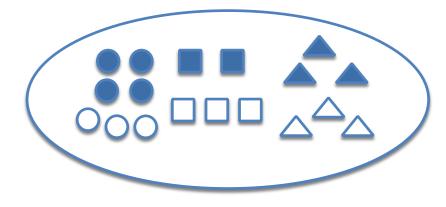
		Circle	Square	Triangle	
C olour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



- P(Blue, Circle) = 4 / 18
- P(White, Square) = 3 / 18
- P(Circle)

Shape

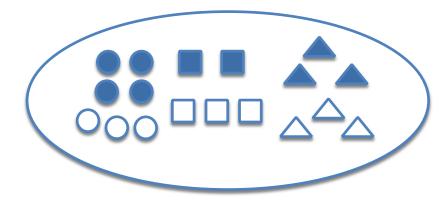
		Circle	Square	Triangle	
C olour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



- P(Blue, Circle) = 4 / 18
- P(White, Square) = 3 / 18
- P(Circle) = 7 / 18

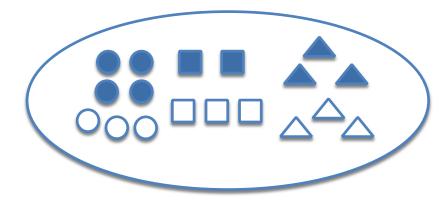
Shape

		Circle	Square	Triangle	
C olour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



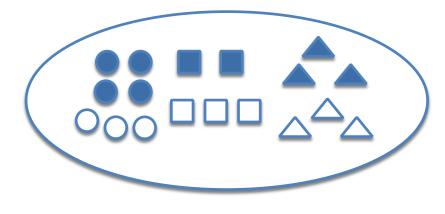
- P(Blue, Circle) = 4 / 18
- P(White, Square) = 3 / 18
- P(Circle) = 7 / 18
- P(Circle | Blue)

		Circle	<mark>S</mark> quare	Triangle	
Colour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



- P(Blue, Circle) = 4 / 18
- P(White, Square) = 3 / 18
- P(Circle) = 7 / 18
- P(Circle | Blue) = 4 / 9

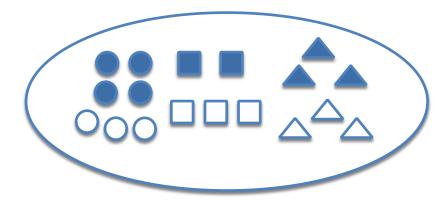
		Circle	<mark>S</mark> quare	Triangle	
Colour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



- P(Blue, Circle) = 4 / 18
- P(White, Square) = 3 / 18
- P(Circle) = 7 / 18
- P(Circle | Blue) = 4 / 9
- P(Blue | Triangle)

Shape

		<u>C</u> ircle	<mark>S</mark> quare	Triangle	
C olour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18



- P(Blue, Circle) = 4 / 18
- P(White, Square) = 3 / 18
- P(Circle) = 7 / 18
- P(Circle | Blue) = 4 / 9
- P(Blue | Triangle) = 3 / 6

Shape

		C ircle	<mark>S</mark> quare	Triangle	
C olour	Blue	4	2	3	9
	White	3	3	3	9
		7	5	6	18

Product Rule

P(A,B) = P(B) * P(A | B) = P(A) * P(B | A)

- Check the propositions
 - Simultaneously: P(A, B)
 - One by one: P(B) * P(A | B) or P(A) * P(B | A)

Note that the product rule also means that

P(B|A) = P(A|B) * P(B)/P(A)

P(A,B) = P(B) * P(A | B) = P(A) * P(B | A)

Shape							
		Circle	<mark>S</mark> quare	Triangle			
C olour	Blue	4	2	3	9		
	White	3	3	3	9		
		7	5	6	18		

- P(Blue, Circle) = 4 / 18
- P(Blue) = 9 / 18
- P(Circle | Blue) = 4 / 9
- P(Circle) = 7 / 18
- P(Blue | Circle) = 4 / 7

Law of Total Probability and Normalisation Rule

 Law of total probability: the probability that a random variable takes a certain value the sum of the joint probability of other variables over their values:

$$P(X = x) = \sum_{y \in \Omega} P(X = x, Y = y)$$

• The normalisation rule: the probabilities of all values a random variable can take sums to one:

$$\sum_{x} P(X = x) = 1$$
$$\sum_{x} P(X = x \mid Y = y) = 1$$

Independence

- The product rule: P(A, B) = P(B) * P(A | B) = P(A) * P(B | A)
- If A and B are independent $(A \perp B)$ to each other, then
 - P(A | B) = P(A)
 - P(B | A) = P(B)
 - P(A, B) = P(A) * P(B)
- Flip coins twice, flip1 and flip2 are independent
- Weather and crop yield are dependent

Independent or Dependent?

- Rolling a die and flipping a coin?
- Flipping a coin twice?
- Picking colored balls from a bag without replacement?
- Medical diagnoses for brothers?
- A customer and the purchase of a product?

Summary

- Uncertainty is present in almost every worthwhile problem/decision
- **Probability theory** can be used to quantify and find relations for uncertainty
- There are many online resources, examples:
 - Khan academy
 - A lecture at the University of Chicago (first few slides discuss frequentist vs Bayesian; we use Bayesian view)