
COMP307/AIML420
INTRODUCTION TO
ARTIFICIAL INTELLIGENCE

Neural Networks 1: Perceptron and MLP

1

Outline

• Why neural networks / current status
• Origin
• Perceptron
• Perceptron learning
• What can (not) perceptron learn
• Extending the perceptron to an MLP

2

Why Neural Networks?

3

• Many applications, such as
– Generative models:

• Large language models (LLMs) → ChatGPT, Gemini
• Image and video generation → stable diffusion, Sora

– Computer Vision/Image processing
• Autonomous vehicles
• Image classification
• Anomaly detection

https://gemini.google.com/app
https://en.wikipedia.org/wiki/Stable_Diffusion
https://openai.com/sora
https://en.wikipedia.org/wiki/Self-driving_car

Where are we going?
• SoA rapidly advancing

• Is Artificial General Intelligence (AGI) close?
– Large language models (LLMs) already know more than humans do

• LLMs can pass university exams
– Computers don’t require 25 years of learning: just copy
– Recursive self improvement

• AI alignment problem
– AI may find unexpected solutions that are not good for us

4

https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Recursive_self-improvement
https://en.wikipedia.org/wiki/AI_alignment

Origin

• Human brain shows amazing capability in
– Learning
– Perception
– Adaptability
– Parallel processing
– …

• A bit slow, though
• 86 billion neurons

– vs 200 billion stars in our galaxy and 200 billion galaxies
– About 0.7 quadrillion neuronal connections = parameters

• Simulate human brain to achieve the above functionalities

5

Origin

6

Origin
• Facts about human brain

– About	 10!! (100 billion) neurons, massively connected
– Each neuron is connected to just under 10" other neurons
– About 10!# (a quadrillion) connections (parameters) in total
– Brain message passing million times slower than electronic circuits

• 200 Hz ”clock rate”
• But can observe relative delay between ears down to 10 microseconds

– Slow but very efficient for complex decision making
– Usually less than 100 serial stages

• 100 step rule (half second)

• In contrast:
– Honeybee: 1 million neurons, 1 billion synapses
– Mouse: 70 million
– Crocodile: 80 million
– Grey parrot: 1.5 billion
– Dog: 4 billion

7MRI tractography

https://en.wikipedia.org/wiki/Interaural_time_difference
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons

Artificial Neuron

8

𝑧!

zj =
mX

i=1

wjixi + bj

yj = '(zj)

https://en.wikipedia.org/wiki/Artificial_neuron

Activation Functions

9

threshold

𝑦 = %𝑥, 	 if	𝑥 > 0
0, 	elsewhere

𝑦 = %1, 	 if	𝑥 > 0
0, 	elsewhere

sigmoid ReLu
(rectified linear unit)

𝑦 =
1

1 + 𝑒"#$

https://en.wikipedia.org/wiki/Activation_function

Perceptron
• Perceptron is single artificial neuron for binary classification

– Invented 1943 (McCulloch and Pitts)
– Real-valued inputs binary output
– Threshold activation function

10

yj =

(
1, if

Pm
i=1 wjixi + bj > 0,

0, otherwise

y =

(
1, if x1 + x2 > 0,

0, otherwise.

https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Artificial_neuron

Perceptron
• To perform linear classification

– Two inputs: a line
– Three inputs: a plane
– Etc.

• Can do on-line learning
– Update 𝑤!" and 𝑏! along with new examples

11

yj =

(
1, if

Pm
i=0 wjixi > 0,

0, otherwise

Learning Perceptron

• How to get the optimal weights and bias?
• Only consider accuracy

– Optimal if 100% accuracy on training set
– Can have many optimal solutions

• To simplify notation, transform bias to a weight:
– 𝑤!# = 𝑏!	with	constant 𝑥# = 1

12

yj =

(
1, if

Pm
i=1 wjixi + bj > 0,

0, otherwise

bj = wj0 · 1 = wj0x0

Learning Perceptron
• Context:

– Initialise weights and threshold randomly (or all zeros)
– Given a new example 𝑥$, 𝑥%, … , 𝑥&, 𝑑

• Input feature vector: 𝑥%, 𝑥&, … , 𝑥'
• Output (class label): 𝑑
• Predicted (by perceptron) output 𝑦

• Basic learning algorithm:
– If 𝑦 = 0 and 𝑑 = 1:

• increase 𝑏 = 𝑤(, increase 𝑤) for positive 𝑥), decrease 𝑤) for negative 𝑥)
– If 𝑦 = 1 and 𝑑 = 0:

• decrease 𝑏 = 𝑤(, decrease 𝑤) for positive 𝑥), increase 𝑤) for negative 𝑥)
– Repeat for each new example until the desired behaviour is achieved
– Can also repeat all data and start again (multiple epochs)

13

y =

(
1, if

Pm
i=0 wixi > 0,

0, otherwise

Learning Perceptron
• Implementation:

– Initialise weights and threshold randomly
– Given a new example 𝑥!, 𝑥$, … , 𝑥%, 𝑑

• Input feature vector: 𝑥!, 𝑥", … , 𝑥#
• Output (class label): 𝑑
• Predicted output 𝑦

• Learning algorithm:

𝑤! ← 𝑤! + 𝜂 𝑑 − 𝑦 𝑥! , 	 𝑖 = 0, 1, 2,⋯ ,𝑚

– Where 𝜂 ∈ [0,1] is called the learning rate
– Repeat the process, possibly over multiple epochs, until convergence or

pre-set maximum steps

14

y =

(
1, if

Pm
i=0 wixi > 0,

0, otherwise

Problem with Perceptron

• What can the perceptron learn?

15

Problem with Perceptron
• What can the perceptron learn?

• Perceptron convergence theorem: The perceptron learning
algorithm will converge if and only if the training set is
linearly separable.

• Cannot learn XOR (Minsky and Papert, 1969)
16

Making it work for XOR
• A solution with two layers (three neurons and one neuron, respectively)

17

threshold 𝑇

𝑥% 𝑥& y =class

0 0 0

1 0 1

0 1 1

1 1 0

0.5

1.5 0.5

0.5

1
1

1

1

-2
1

1

XOR(𝑥%, 𝑥&)
𝑥%

𝑥&

𝑦 =
1, if	;

)

𝑤)𝑥) − 𝑇	 > 0	

0, 	 otherwise

Multilayer Perceptron (MLP)

• We saw that more neurons/layers can do more
• MLP: any number of “hidden” layers with any number of nodes
• All outputs of previous layer connected to all neurons of a layer
• All connections associated with a weight, nonlinearity operates on sum

of weighted previous-layer outputs
– Each layer requires a weight matrix (matrix of parameters), 𝑊
– Layer operation is now 𝑦 = 𝜙(𝑊𝑥 + 𝑏)

18

COMP307 ML5 (NNs):

Multilayer Perceptron (Neural Networks)
• Change one or two layers of nodes to three or more layers

- Multilayer perceptron (MLP)

- Feed forward neural networks

- Standard feed forward networks: nodes in neighbouring layers
are fully connected

- Input layer: input patterns/features

- Output layer: output patterns/class labels

- Hidden layer(s): high level features

3
COMP307 ML5 (Neural Networks): 3

Multilayer Perceptron (Neural Networks)

• Change one or two layers of nodes to three or more layers

– Multilayer perceptron (MLP)

– Feed forward neural networks

– Standard feed forward networks: nodes in neighbouring layers are fully

connected

layer
Hidden Hidden OutputInput

layer layer layer

– Input layer: input patterns/features

– Output layer: output patterns/class labels

– Hidden layer(s): high level features

Why MLP?
• We want to approximate some desired function

– Consider a 𝐷-dimensional vector of binary inputs (zeros and ones)
• 2! possible input vectors
• A detector for each of the 2! possible inputs:

– Consider a detector neuron for input vector 𝑣 with v! ∈ {0,1}
– Set the weights for neuron 𝑖 to w!" = 4𝑣# − 2 and threshold to 𝑇 = 𝐷 + ∑#𝑤#$ − 0.5
– Neuron 𝑖 will output a 𝑦$ = 1 only if the input is 𝑥 = 𝑣; else 𝑦$ = 0

• This is a universal approximator in this binary space
– More generally, wide one-layer networks can be universal function approximators

• Despite this, deep rather than wide networks are used in practice as
deep networks are easy to train
1. Define a mathematical objective function (what do we want)

• Objective function has parameters as argument (for given database)
2. Make network differentiable, so we can search for the best good parameters by

sliding down the objective function with gradient descent

• MLP is conceptually simplest deep network

19

Summary

• Neural networks now ubiquitous
– Text / image /video generation, image analysis, control, ⋯

• Alignment will be a serious issue
• Perceptron – the simplest neural network
• Learning for a perceptron and its limitation
• Multi-layer perceptron (MLP), which is a standard

component of modern networks

• Another view of similar content

20

https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec5.pdf

