COMP307/AIML420 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Neural Networks 1: Perceptron and MLP

Outline

- Why neural networks / current status
- Origin
- Perceptron
- Perceptron learning
- What can (not) perceptron learn
- Extending the perceptron to an MLP

Why Neural Networks?

- Many applications, such as
 - Generative models:
 - Large language models (LLMs) \rightarrow ChatGPT, <u>Gemini</u>
 - Image and video generation \rightarrow <u>stable diffusion</u>, <u>Sora</u>
 - Computer Vision/Image processing
 - <u>Autonomous vehicles</u>
 - Image classification
 - Anomaly detection

Where are we going?

• SoA rapidly advancing

- Is <u>Artificial General Intelligence</u> (AGI) close?
 - Large language models (LLMs) already know more than humans do
 - LLMs can pass university exams
 - Computers don't require 25 years of learning: just copy
 - <u>Recursive self improvement</u>
- <u>Al alignment</u> problem
 - AI may find unexpected solutions that are not good for us

Origin

- Human brain shows amazing capability in
 - Learning
 - Perception
 - Adaptability
 - Parallel processing
 - ...
- A bit slow, though
- 86 billion neurons
 - vs 200 billion stars in our galaxy and 200 billion galaxies
 - About 0.7 quadrillion neuronal connections = parameters
- Simulate human brain to achieve the above functionalities

Origin

- Facts about human brain
 - About 10¹¹ (100 billion) neurons, massively connected
 - Each neuron is connected to just under 10^4 other neurons
 - About 10¹⁵ (a quadrillion) connections (parameters) in total
 - Brain message passing million times slower than electronic circuits
 - 200 Hz "clock rate"
 - But can observe relative delay between ears down to 10 microseconds
 - Slow but very efficient for complex decision making
 - Usually less than 100 serial stages
 - 100 step rule (half second)
- In contrast:
 - Honeybee: 1 million neurons, 1 billion synapses
 - Mouse: 70 million
 - Crocodile: 80 million
 - Grey parrot: 1.5 billion
 - Dog: 4 billion

Artificial Neuron

Activation Functions

threshold

sigmoid

ReLu (rectified linear unit)

Perceptron

- Perceptron is single <u>artificial neuron</u> for binary classification
 - Invented 1943 (McCulloch and Pitts)
 - Real-valued inputs binary output
 - Threshold activation function

Perceptron

- To perform linear classification
 - Two inputs: a line
 - Three inputs: a plane
 - Etc.
- Can do on-line learning
 - Update w_{ji} and b_j along with new examples

Learning Perceptron

- How to get the optimal weights and bias?
- Only consider accuracy
 - Optimal if 100% accuracy on training set
 - Can have many optimal solutions
- To simplify notation, transform bias to a weight:

$$- w_{j0} = b_j$$
 with constant $x_0 = 1$

$$y_{j} = \begin{cases} 1, & \text{if } \sum_{i=1}^{m} w_{ji} x_{i} + b_{j} > 0, \\ 0, & \text{otherwise} \end{cases}$$
$$b_{j} = w_{j0} \cdot 1 = w_{j0} x_{0}$$
$$y_{j} = \begin{cases} 1, & \text{if } \sum_{i=0}^{m} w_{ji} x_{i} > 0, \\ 0, & \text{otherwise} \end{cases}$$

Learning Perceptron

- Context:
 - Initialise weights and threshold randomly (or all zeros)
 - Given a new example $(x_1, x_2, ..., x_m, d)$
 - Input feature vector: $(x_1, x_2, ..., x_m)$
 - Output (class label): d
 - Predicted (by perceptron) output y

$$y = \begin{cases} 1, & \text{if } \sum_{i=0}^{m} w_i x_i > 0, \\ 0, & \text{otherwise} \end{cases}$$

- Basic learning algorithm:
 - If y = 0 and d = 1:
 - increase $b = w_0$, increase w_i for positive x_i , decrease w_i for negative x_i
 - If y = 1 and d = 0:
 - decrease $b = w_0$, decrease w_i for positive x_i , increase w_i for negative x_i
 - Repeat for each new example until the desired behaviour is achieved
 - Can also repeat all data and start again (multiple epochs)

Learning Perceptron

- Implementation:
 - Initialise weights and threshold randomly
 - Given a new example $(x_1, x_2, ..., x_m, d)$
 - Input feature vector: $(x_1, x_2, ..., x_m)$
 - Output (class label): d
 - Predicted output y

$$y = \begin{cases} 1, & \text{if } \sum_{i=0}^{m} w_i x_i > 0, \\ 0, & \text{otherwise} \end{cases}$$

• Learning algorithm:

$$w_i \leftarrow w_i + \eta (d - y) x_i, \qquad i = 0, 1, 2, \cdots, m$$

- Where $\eta \in [0,1]$ is called the learning rate
- Repeat the process, possibly over multiple epochs, until convergence or pre-set maximum steps

Problem with Perceptron

• What can the perceptron learn?

Problem with Perceptron

• What can the perceptron learn?

- *Perceptron convergence theorem*: The perceptron learning algorithm will converge **if and only if** the training set is linearly separable.
- Cannot learn XOR (Minsky and Papert, 1969)

Making it work for XOR

• A solution with two layers (three neurons and one neuron, respectively)

Multilayer Perceptron (MLP)

- We saw that more neurons/layers can do more
- MLP: any number of "hidden" layers with any number of nodes
- All outputs of previous layer connected to all neurons of a layer
- All connections associated with a weight, nonlinearity operates on sum of weighted previous-layer outputs
 - Each layer requires a weight matrix (matrix of parameters), W
 - Layer operation is now $y = \phi(Wx + b)$

Input Hidden Hidden Output layer layer layer layer

Why MLP?

- We want to approximate some desired function
 - Consider a *D*-dimensional vector of binary inputs (zeros and ones)
 - 2^D possible input vectors
 - A detector for each of the 2^D possible inputs:
 - Consider a detector neuron for input vector v with $v_j \in \{0,1\}$
 - Set the weights for neuron *i* to $w_{ji} = 4v_j 2$ and threshold to $T = D + \sum_j w_{ji} 0.5$
 - Neuron *i* will output a $y_i = 1$ only if the input is x = v; else $y_i = 0$
 - This is a universal approximator in this binary space
 - More generally, wide one-layer networks can be universal function approximators
- Despite this, deep rather than wide networks are used in practice as deep networks are easy to train
 - 1. Define a mathematical objective function (what do we want)
 - Objective function has *parameters* as argument (for given database)
 - 2. Make network differentiable, so we can search for the best good parameters by sliding down the objective function with gradient descent
- MLP is conceptually simplest deep network

Summary

- Neural networks now ubiquitous
 - Text / image /video generation, image analysis, control, …
- Alignment will be a serious issue
- Perceptron the simplest neural network
- Learning for a perceptron and its limitation
- Multi-layer perceptron (MLP), which is a standard component of modern networks
- Another view of similar content