COMP307/AIMLA20
INTRODUCTION TO
ARTIFICIAL INTELLIGENCE

Neural Networks 2: Backpropagation

Outline

* Feed forward neural network
« Back propagation to train neural network

Neuron

Generally real-valued input (denoted s; for input i)
Generally real-valued output (denoted y)

Weights w;

Activation function a(-)

y = a(Xj=1w;s; + b)

inputs weights

w():b

1

Wy,

nonlinearity

wo

weighted sum step function

Feedforward Neural Network

 MLP /feedforward network
— Referred to as “fully connected” layer / neural network
— Multiple (hidden) layers, many nodes in each layer
— No jump connections

— Each node connects to all nodes of adjacent layers
* Very many weights (parameters): one per link

" " .
SRR &
g%g%@ <

CF 20

Input Hidden Hidden Output

layer layer layer layer

Learning Network Parameters

Have a database of inputs and outputs
Find MLP parameters that mimic input / output relation
A complex optimisation problem

M
Pl
i llq#}‘;,’ﬂﬂ!,'

it

I
il
N J,j','

W* = argmin f (W)
74

1]
Y
I}

i)
i I
gillll]
it

"u"x'!”

f is objective function = loss function

W* is the W that minimizes f (W)

f usually non-convex (many local optima)
Extremely high dimensional

Impossible to solve using analytic methods
Must use numerical methods

Optimisation=Learning ANN Weights

« Gradient descent 6 f(W)
— Compute gradient Vy, f(W) SW,
— Small steps in direction -V, f(W) ;"
_ : - Vwf(W) = ;
Example visualization Sf(W)
SW,

« Stochastic gradient descent
— Divide database into batches

— Define surrogate f (W) for each
subsequent batch

— Jittery descent for “true” f (W)
— Quicker and perhaps also better

« Context:
— Simulated annealing
— Tabu search
— Evolutionary computation

https://en.wikipedia.org/wiki/Gradient
https://www.youtube.com/watch?v=kJgx2RcJKZY
https://www.youtube.com/watch?v=kJgx2RcJKZY

Back Propagation (BP) Algorithm

Gradient descent on network parameters

Input: data (input-output pair examples) {(s, d*))}
Initialise network weights (parameters) W

Repeat until stop condition:

— Feedforward
* For each example z, calculate the network output o, with current weights

« Calculate the average loss (objective) function as a function of parameters,
J(W), over batch of z

— Back propagation
« Estimate the gradient of the loss to each individual weight w;
— How much the loss will be reduced by changing the weight

« Change each individual weight proportional to minus its gradient

— The gradients are computed backwards (from the last layer to the first layer) in one
sweep for all weights, tp reduce computational effort

« Output: updated network weights W

Back Propagation (BP) Algorithm

 How to calculate contribution of w;_,; to the loss function?

\
\
\

QOi W;—;0; o; = activate(w;;0; +...)
i >E —

/
/

» When changing w;_,; by tiny amount dw;_,, the loss change
d_loss should be proportional to o;xslope;xf;xdw;_,;:
— Proportional to dw;_,; itself

— Proportional to the previous-neuron output: o;
— Proportional to slope of the activation function at node j: slope;

— Proportional to slope of the error as a function of neuron output o;: f3;

Wi j Wi-j0; 0j = act(w;,;o; +) loss

N A~ A~ -

Back Propagation (BP) Algorithm

Previous slide says d_loss = o0;XslopejXfixdw;_,;
0 loss

— Hence gradient is = 0; slope; f;

aWi_>j
slope; is derivative of activation function

B;, slope of the error as a function of neuron output o; is
recursive in the layers:
— Recursion adding contributions of downstream neurons: ik

Bi = X Wjok X slopey X By,

— Output layer: for squared error loss/objective: [, = d,ff) -

o

Wikipedia page has nice explanation (requires calculus)

https://en.wikipedia.org/wiki/Backpropagation

Simple example backpropagation

« Assumptions for our case:
— Activation function sigmoid
(not so good, but analytically tractable) e
slopej = oj(l — oj) o
— Have data input-output data pairs {(s, d®))}
— Squared error (L2) loss function

2 2
Loss = Zsedata”d(S) — O(S)” = ZsEdata ZiEvector elements (di(S) o Oi(S))

» Back propagation:
— Qutput node k: f5), = d,(f) - o,(f) (slope/derivative of loss)
— Hidden node j: Bj= X, wjor0_k(1 — ox) Py
— Update: Aw;_,, « — ojxslopexXf = — 0j0, (1 — 0y)Pk

Simple BP example: Implementation

For assumptions of previous slide (includes not-so-good sigmoid)

Have data set {(s,d‘®))}
Set learning rate n
Set weights (parameters) W to random values

Repeat until stop condition:
— For all pairs in batch
- Feed forward pass to get network outputs 0®
« Backward pass:
— Compute S, = d,(f) — o,ff) for each output node
— Compute B; = X wj_, 0, (1 — 0r) By,
— Compute the weight changes Aw;_,, = — 10,0, (1 — 04) By
— Add weight changes for all data in batch
— Change weights by scaled weight-change sum

BP Algorithm Example

« Calculate one pass of the BP algorithm given the example
(feedforward + backpropagation)

Inputs Outputs

S1 S2 Os O¢

Inputs Hidden Outputs

Automatic differentiation

* In the real world, no-one does backpropagation “manually”

« Automatic differentiation evaluates the gradient of a function:
— Applies the chain-rule and evaluates the result
— Provides gradient (in numbers) for current input-output batch

— JAX example (differentiate to W and b)
» Let loss function be: loss_fn(W, b, s)
« We select the first two arguments (0,1) to differentiate to:

W_grad, b_grad = grad(loss_fn, argnums=(0,1))(W, b, s)

 Related but different:

— Symbolic differentiation is aimed at obtaining explicit symbolic
expressions (e.g., Mathematica or Maple)

— Numerical differentiation / finite-difference methods do not require
explicit derivatives, but are less exact

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

Backpropagation: automatic differentiation

Example using JAX

def loss_fn(params, s, target):
y = fcnn(params, s)
loss = jnp.mean(jnp.square(target-y))
return loss, loss

main program (network to approximate multiplication of input given matrix)
rng = random.PRNGKey(3)

matrix = jnp.array([[10.,0.],[7.,10.]]) # for data generation

layerDims = jnp.array((2,3,2))

batchno = 1001

batchsize = 10

params, rng = init_fcnn(layerDims, rng)
optimiser = optax.adam(learning_rate=0.01)
opt_state = optimiser.init(params)

for batch in range(batchno):
s, target, rng = gendata2(batchsize, matrix, rng) # generate matrix multiply input-output data
grads, loss = jax.grad(loss_fn, argnums=0, has_aux=True)(params, s, target) # differentiate to params
updates, opt_state = optimiser.update(grads, opt_state, params)
params = optax.apply_updates(params, updates)

if (batch % 100) == 0:
print('batch’, batch, 'training loss', loss)

Notes on BP Algorithm

« Epoch: all input examples (entire training set)

« Training may require thousands of epochs. A convergence
curve will help to decide when to stop
— Split data into training data, validation data, test data
— Use validation data to decide when to stop
— Don’t use test data during ablation studies

0.045

0.040 |

0.035

0.030 |

0.025

0.020 |

0.015

0.010

0.005 |

0.000 - - - -
0 10 20 30 40 50
Epochs

Notes on BP Algorithm

Squared error is just one objective function
— Good choice for regression (but not only choice)
— Not a good choice for classification
Stochastic gradient descent: optimise over batches of data
— Faster and better
Automatic differentiation
— Works for any architecture
Data:

Training data: examples you train on (divide into batches)

Validation data: data not part of training data that you use to make the
convergence curve.

Test data: what you use at the end to evaluate performance; keep these
separate so as not to bias your methodology

16

Summary

 MLP = fully connected neural network

» Back propagation
— QGradient descent
— Feedforward then error back propagation -> weight update
— In practice we always use automatic differentiation
— Wikipedia page
— History (not unbiased)

https://en.wikipedia.org/wiki/Backpropagation
https://people.idsia.ch/~juergen/who-invented-backpropagation.html

