
COMP307/AIML420
INTRODUCTION TO
ARTIFICIAL INTELLIGENCE

Neural Networks 2: Backpropagation

1

Outline

• Feed forward neural network
• Back propagation to train neural network

2

Neuron

• Generally real-valued input (denoted 𝑠! for input 𝑖)
• Generally real-valued output (denoted 𝑦)
• Weights 𝑤!
• Activation function 𝑎(⋅)
• 𝑦 = 𝑎(∑!"#$ 𝑤!𝑠! + 𝑏)

3

w0 = b
nonlinearity

Feedforward Neural Network

• MLP / feedforward network
– Referred to as “fully connected” layer / neural network
– Multiple (hidden) layers, many nodes in each layer
– No jump connections
– Each node connects to all nodes of adjacent layers

• Very many weights (parameters): one per link

4

COMP307 ML5 (NNs):

Multilayer Perceptron (Neural Networks)
• Change one or two layers of nodes to three or more layers

- Multilayer perceptron (MLP)

- Feed forward neural networks

- Standard feed forward networks: nodes in neighbouring layers
are fully connected

- Input layer: input patterns/features

- Output layer: output patterns/class labels

- Hidden layer(s): high level features

3
COMP307 ML5 (Neural Networks): 3

Multilayer Perceptron (Neural Networks)

• Change one or two layers of nodes to three or more layers

– Multilayer perceptron (MLP)

– Feed forward neural networks

– Standard feed forward networks: nodes in neighbouring layers are fully

connected

layer
Hidden Hidden OutputInput

layer layer layer

– Input layer: input patterns/features

– Output layer: output patterns/class labels

– Hidden layer(s): high level features

Learning Network Parameters

• Have a database of inputs and outputs
• Find MLP parameters that mimic input / output relation
• A complex optimisation problem

𝑊∗ = argmin
&

𝑓(𝑊)

• 𝑓	is objective function = loss function
• 𝑊∗ is the 𝑊 that minimizes 𝑓(𝑊)
• 𝑓	usually non-convex (many local optima)
• Extremely high dimensional
• Impossible to solve using analytic methods
• Must use numerical methods

5

Optimisation=Learning ANN Weights
• Gradient descent

– Compute gradient ∇!𝑓(𝑊)
– Small steps in direction −∇!𝑓(𝑊)
– Example visualization

• Stochastic gradient descent
– Divide database into batches
– Define surrogate 𝑓(𝑊) for each

subsequent batch
– Jittery descent for “true” 𝑓(𝑊)
– Quicker and perhaps also better

• Context:
– Simulated annealing
– Tabu search
– Evolutionary computation

6

∇!𝑓 𝑊 =

𝛿	𝑓(𝑊)
𝛿𝑊"
⋮

𝛿𝑓(𝑊)
𝛿𝑊#

https://en.wikipedia.org/wiki/Gradient
https://www.youtube.com/watch?v=kJgx2RcJKZY
https://www.youtube.com/watch?v=kJgx2RcJKZY

Back Propagation (BP) Algorithm
• Gradient descent on network parameters

• Input: data (input-output pair examples) (𝑠, 𝑑 !)
• Initialise network weights (parameters) 𝑊
• Repeat until stop condition:

– Feedforward
• For each example 𝑧, calculate the network output 𝑜! 	 with current weights
• Calculate the average loss (objective) function as a function of parameters,
𝐽(𝑊), over batch of 𝑧

– Back propagation
• Estimate the gradient of the loss to each individual weight	𝑤"

– How much the loss will be reduced by changing the weight
• Change each individual weight proportional to minus its gradient

– The gradients are computed backwards (from the last layer to the first layer) in one
sweep for all weights, tp reduce computational effort

• Output: updated network weights 𝑊

7

Back Propagation (BP) Algorithm
• How to calculate contribution of 𝑤!→2 to the loss function?

• When changing 𝑤!→2 by tiny amount 𝑑𝑤!→2, the loss change
𝑑_𝑙𝑜𝑠𝑠	 should be proportional to 𝑜!×𝑠𝑙𝑜𝑝𝑒2×𝛽2×𝑑𝑤!→2:
– Proportional to 𝑑𝑤!→#	itself
– Proportional to the previous-neuron output: 𝑜!
– Proportional to slope of the activation function at node 𝑗: 𝑠𝑙𝑜𝑝𝑒#
– Proportional to slope of the error as a function of neuron output o#: 𝛽#

8

𝑤$→& 𝑤$→&𝑜$ …𝑜& = 𝑎𝑐𝑡(𝑤$→&𝑜$ +⋯) 𝑙𝑜𝑠𝑠

Back Propagation (BP) Algorithm

• Previous slide says 𝑑_𝑙𝑜𝑠𝑠 = 	𝑜!×𝑠𝑙𝑜𝑝𝑒2×𝛽2×𝑑𝑤!→2
– Hence gradient is $	&'((

$)#→%
= 𝑜!	𝑠𝑙𝑜𝑝𝑒#	𝛽#

• 𝑠𝑙𝑜𝑝𝑒2	is derivative of activation function
• 𝛽2, slope of the error as a function of neuron output o2 is

recursive in the layers:
– Recursion adding contributions of downstream neurons:

 𝛽# = ∑*𝑤#→*	×	𝑠𝑙𝑜𝑝𝑒*	×	𝛽*	

– Output layer: for squared error loss/objective: 𝛽* = 𝑑*
(() − 𝑜*

(

• Wikipedia page has nice explanation (requires calculus)

9

j

k𝑤&→'

https://en.wikipedia.org/wiki/Backpropagation

Simple example backpropagation

• Assumptions for our case:
– Activation function sigmoid
 (not so good, but analytically tractable)

𝑠𝑙𝑜𝑝𝑒# = 𝑜# 1 − 𝑜#
– Have data input-output data pairs {(𝑠, 𝑑 ()}
– Squared error (L2) loss function

Loss = ∑(∈./0/ 𝑑 (− 𝑜 (1
= ∑(∈./0/∑!∈2340'5	3&36370(𝑑!

(− 𝑜!
(1

• Back propagation:
– Output node 𝑘: 𝛽* = 𝑑*

(− 𝑜*
((slope/derivative of loss)

– Hidden node 𝑗: 𝛽#= ∑*𝑤#→*𝑜_𝑘 1 − 𝑜* 𝛽*
– Update: Δ𝑤#→* ∝ −	𝑜#×𝑠𝑙𝑜𝑝𝑒*×𝛽* = −	𝑜#𝑜* 1 − 𝑜* 𝛽*

10

Simple BP example: Implementation
• For assumptions of previous slide (includes not-so-good sigmoid)

• Have data set { 𝑠, 𝑑 ! }
• Set learning rate 𝜂
• Set weights (parameters) 𝑊	to random values
• Repeat until stop condition:

– For all pairs in batch
• Feed forward pass to get network outputs 𝑜 &

• Backward pass:
– Compute 𝛽' = 𝑑'

& − 𝑜'
& for each output node

– Compute 𝛽(= ∑'𝑤(→'𝑜' 1 − 𝑜' 𝛽'
– Compute the weight changes Δ𝑤(→' = −	𝜂𝑜(𝑜' 1 − 𝑜' 𝛽'

– Add weight changes for all data in batch
– Change weights by scaled weight-change sum

11

BP Algorithm Example
• Calculate one pass of the BP algorithm given the example

(feedforward + backpropagation)

Inputs Outputs

𝑠(𝑠) 𝑜* 𝑜+

𝑠(

𝑠)

𝑜*

𝑜+

Automatic differentiation

• In the real world, no-one does backpropagation “manually”
• Automatic differentiation evaluates the gradient of a function:

– Applies the chain-rule and evaluates the result
– Provides gradient (in numbers) for current input-output batch
– JAX example (differentiate to 𝑊 and 𝑏)

• Let loss function be: loss_fn(W, b, s)
• We select the first two arguments (0,1) to differentiate to:

 W_grad, b_grad = grad(loss_fn, argnums=(0,1))(W, b, s)

• Related but different:
– Symbolic differentiation is aimed at obtaining explicit symbolic

expressions (e.g., Mathematica or Maple)
– Numerical differentiation / finite-difference methods do not require

explicit derivatives, but are less exact

13

https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html

Backpropagation: automatic differentiation
Example using JAX
def loss_fn(params, s, target):
 y = fcnn(params, s)
 loss = jnp.mean(jnp.square(target-y))
 return loss, loss

main program (network to approximate multiplication of input given matrix)
rng = random.PRNGKey(3)
matrix = jnp.array([[10.,0.],[7.,10.]]) # for data generation
layerDims = jnp.array((2,3,2))
batchno = 1001
batchsize = 10

params, rng = init_fcnn(layerDims, rng)
optimiser = optax.adam(learning_rate=0.01)
opt_state = optimiser.init(params)

for batch in range(batchno):
 s, target, rng = gendata2(batchsize, matrix, rng) # generate matrix multiply input-output data
 grads, loss = jax.grad(loss_fn, argnums=0, has_aux=True)(params, s, target) # differentiate to params
 updates, opt_state = optimiser.update(grads, opt_state, params)
 params = optax.apply_updates(params, updates)

 if (batch % 100) == 0:
 print('batch', batch, 'training loss', loss)

14

Notes on BP Algorithm

• Epoch: all input examples (entire training set)
• Training may require thousands of epochs. A convergence

curve will help to decide when to stop
– Split data into training data, validation data, test data
– Use validation data to decide when to stop
– Don’t use test data during ablation studies

15

Notes on BP Algorithm

• Squared error is just one objective function
– Good choice for regression (but not only choice)
– Not a good choice for classification

• Stochastic gradient descent: optimise over batches of data
– Faster and better

• Automatic differentiation
– Works for any architecture

• Data:
– Training data: examples you train on (divide into batches)
– Validation data: data not part of training data that you use to make the

convergence curve.
– Test data: what you use at the end to evaluate performance; keep these

separate so as not to bias your methodology

16

Summary

• MLP = fully connected neural network
• Back propagation

– Gradient descent
– Feedforward then error back propagation -> weight update
– In practice we always use automatic differentiation
– Wikipedia page
– History (not unbiased)

17

https://en.wikipedia.org/wiki/Backpropagation
https://people.idsia.ch/~juergen/who-invented-backpropagation.html

