
COMP307/AIML420
INTRODUCTION TO
ARTIFICIAL INTELLIGENCE

More on on objective functions and

practical aspects of neural networks

1

Outline

• Objective function
– Cross entropy

• Weight update frequency
• Learning rate
• Overfitting
• Stopping criteria
• Local minima
• NN architecture
• Momentum

2

Objective/Loss Function
• Minimising the loss function = finding a good NN

– Loss is function of weights/parameters, typically denoted as 𝜃 or 𝑊
• Loss function is often written as 𝐽!
• The function changes if you change the data set, but the data set

is fixed during the optimisation
• Examples:

– Squared (L2) error
• For regression
• In its simplest form: 𝐽! = ∑"∈$ 𝑑" − 𝑦" %

– With 𝑑! and 𝑦! scalars
• More general formulation for vectors: 𝐽! = ∑&∈' 𝑑& − 𝑦& %

– With 𝑑" and 𝑦" vectors;
– Norm squared 𝑑" − 𝑦" # is sum squared error for vector elements

– Cross entropy
• For classification
• It is complicated

3

Entropy

• Consider 𝐾 symbols with probabilities 𝑝!, 𝑝", ⋯ , 𝑝#, ⋯ , 𝑝$
– For example, letters in a document

• Entropy measures (average) information = disorder
– −log	𝑝$ is ground-truth information in observing symbol 𝑘

• Is minimum number of bits you need to spend for transmitting “it was
symbol 𝑘”

• Letter “x” is rare, (𝑝! small), so observing it provides a lot of information
when reading; −log"(0.0029) = 8.4 bits of information
– Her name has an “x” in it is highly informative (rare)

– Entropy H = 	−∑$ 𝑝$log	𝑝$ is average information per symbol:
• How many bits we need to spend on average per symbol for a sequence

of symbols each drawn from the distribution 𝑝#, 𝑝", ⋯ , 𝑝$
• Example: the average information per letter in text (without accounting

for dependencies)

4

http://www.nameplayground.com/?withtype=contain&nameswith=x

Cross Entropy
• Consider 𝐾 symbols/classes with probabilities 𝑝%, 𝑝&, ⋯ , 𝑝$, ⋯ , 𝑝'

• Entropy is	H = 	−∑$ 𝑝$log	𝑝$

• Cross entropy measures bits to transmit if we use our model instead:
– Model distribution is 𝑞#, 𝑞", … , 𝑞$;	what we think the distribution is
– 	−log	 𝑞! is what our model says the information is when we observe symbol 𝑘

• How many bits we think we need to spend for transmitting “it was symbol 𝑘”
– Cross entropy D = 	−∑% 𝑝%log	𝑞% 	 is average model information per symbol

• How many bits we need to spend on average per symbol for a sequence of symbols
each drawn from the distribution 𝑝(, 𝑝%, ⋯ , 𝑝) if we use our model distribution as a
basis for assigning bits

– Cross entropy is always larger than, or equal to, entropy: 𝐷 ≥ 𝐻
• Hence, if we minimise cross entropy we try to approximate 𝑝(, 𝑝%, ⋯ , 𝑝) with our

model 𝑞(, 𝑞%, ⋯ , 𝑞) 	

5

Measuring (Cross) Entropy for Data

• Entropy is	H = 	−∑(𝑝(log	𝑝(
• The ∑(𝑝(part indicates we are averaging over the distribution

– We weight −log	𝑝! proportional to its rate of occurrence
• For a database 𝐴	with data {𝑥}	the symbols 𝑘 will appear

proportional to their probability. Let 𝑘) be the symbol of
observation 𝑥, then

H ≈ 	−
1
𝐴
4
)∈+

log	𝑝(&

• Similarly, an estimate of cross entropy is:

D ≈ 	−
1
𝐴
4
)∈+

log	𝑞(&

• 𝐴 is number of data in 𝐴 (cardinality of 𝐴)
• We will be sloppy and use “=“ in the following

6

Cross Entropy Loss for Classification I
• We have data pairs (class, input symbol) = (𝑐, 𝑘);

 hence D = 	−∑(#,!)𝑝 𝑐, 𝑘 	log	𝑞(𝑐, 𝑘)

• We consider classification problems where each input 𝑘& belongs to one class

• Rewrite (use product rule): D = 	−∑(#,!)𝑝 𝑘 𝑝 𝑐|𝑘 	log	(𝑞 𝑐 𝑘 𝑝 𝑘)

– 𝑞 𝑐 𝑘 is model probability of class 𝑐	for input symbol 𝑘 with (𝑞 𝑘 = 𝑝 𝑘)

• For data (see previous slide): D = − '
(
∑& 𝑝 𝑐&|𝑘& 	log	(𝑞 𝑐& 𝑘& 𝑝 𝑘&)

– We assumed that averaging data x is like averaging over symbols 𝑘

• Remove constant 𝑝 𝑘& , loss is: J) = −∑& 𝑝 𝑐&|𝑘& 	log	𝑞 𝑐& 𝑘&
• Observed data one-hot:	 𝑝 𝑐& 𝑘& = 0 or 𝑝 𝑐& 𝑘& = 1

• Can also write J) = −∑#∑&∈+! log	𝑞 𝑐 𝑘&
– 𝐴*	is the subset of training data of class 𝑐

7

symbol 𝑘 can be entire image

Cross Entropy Loss for Classification II
• Loss function J? = −∑@ 𝑝 𝑐@|𝑘@ 	log	𝑞 𝑐@ 𝑘@
• Have a neural network for 𝑞 𝑐 𝑘

– Weights / parameters 𝜃; one output neuron for each class
• Ensure that ∑A 𝑞 𝑐 𝑘 = 1 by using softmax on output layer

– Converts any output vector to probabilities: 𝑞 𝑐 𝑘 = ()* ++($)
∑+ ()* ++ $

– Often already integrated into the cross entropy function
• Apply SGD to J? to find parameters of classifier NN 𝑞 𝑐 𝑘

8

Weight Update Frequency

• Traditional View:
– With frequency of weight update = frequency of passes
– Online learning: a pass for each new input-output example

• Very slow
– Offline learning: a pass for all the training instances

• Weight change is the sum of the changes for all the training instances
• Slow and often impossible

• Batch learning: a pass for a batch (subset of training instances)
– Weight change is the sum of the changes for all instances in the batch
– Now the standard approach

• Batch learning leads to stochastic gradient descent (SGD)
• Offline learning is true gradient descent

9

Batch Size

• Assuming a weight 𝑤	 = 	0.2
• 4 new training instances
• Learning with batch size 1

– Instance 1, Δ𝑤 = 0.1, 𝑤 → 0.3
– Instance 2, Δ𝑤 = 0.05, 𝑤 → 0.35
– Instance 3, Δ𝑤 = 0.03, 𝑤 → 0.38
– Instance 4, Δ𝑤 = 0.01, 𝑤 → 0.39

• Learning with batch size 4
– Instance 1, Δ𝑤 = 0.1, 𝑤 = 0.2 unchanged
– Instance 2, Δ𝑤 = 0.08, 𝑤 = 0.2 unchanged
– Instance 3, Δ𝑤 = −0.03, 𝑤 = 0.2 unchanged
– Instance 4, Δ𝑤 = 0.05, 𝑤 = 0.2 unchanged
– 𝑤 → 0.2 + 0.1 + 0.08 − 0.03 + 0.05 = 0.4

• Note that learning rate can scale changes Δ𝑤	up and down
10

Epoch and Batch Size

• Epoch: period when all the training instances are used once

• 10000 training instances, batch size = 500, then need 20
iterations to complete one epoch

11

More on Learning Rate

• Learning rate: Δ𝑤/→1 = 𝜂𝑜/𝑜1 1 − 𝑜1 𝛽1,	 (sigmoidal case)
• Large learning rate may cause oscillating behaviour
• Small learning rate may cause slow convergence
• Use trial and error to find good value (0.1 – 0.0001 to start)
• Use schedule (standard for optimisers in PyTorch, JAX, etc.)

12

Optimisers Use Momentum

• Large NNs may take days or weeks to train
• Optimiser speed is important
• Momentum is standard optimization approach

– Simple example: use gradient from last training step
Δ𝑤0→2 𝑡 ← 𝜂𝑜0𝑜2 1 − 𝑜2 𝛽2 + 𝛼Δ𝑤0→2(𝑡 − 1)

– Choose parameters for problem

• In practice: use an optimiser library, usually Adam; does it for you
– Adam is cited 170.000 times!

13

https://arxiv.org/pdf/1412.6980.pdf%5D

Overfitting
• High accuracy on training set, but poor accuracy on test set
• Very common problem; caused by

– Training for too long
– Standard argument (so-so): too many weights (parameters) to train
– Too few training instances

• Conventional thinking: the more parameters to train, the
more data (training instances) needed for accuracy

14

COMP307 ML6 (NNs and NE): 5

Overfitting (Continued)

Small networks Large nets

Simple curve Complex curve

Validation

Stopping Criteria

• Traditional:
– When a certain number of epochs is reached
– When the error (e.g., mean/total squared error) on the training set is

smaller than a threshold
– Proportion of correctly classified training instances (i.e. accuracy) is

larger than a threshold
• Early stopping:

– Validation control to avoid overfitting
– Stop when validation error goes back up

15

Validation Control
• Split the training set into training and validation sets:

– We now have training, validation, and test data sets
• Use training set to compute the weight changes
• Every m (e.g., 10, 50, 100) epochs apply the current NN to

the validation set to calculate the validation error
• Stop training when the error on the validation set increases
• Only use test set when all is done

16

Remember: Local Minima
• For each weight vector, we can calculate the loss of the NN
• The loss surface/landscape can be very irregular: many

local minima
• SGD goal: finding a good minimum
• Don’t even dream about finding the global minimum

17
Surface with 2 weights Surface with 1 weight

NN Architecture: Inputs/Outputs

• How many input and output nodes?
– Usually determined by the problem
– Number of input nodes equals the number of input features
– Number of outputs
– One output node for binary classification (true/false)
– N output nodes for N-class classification; output is (𝑞%, 𝑞&, … , 𝑞2)

• Example: output (0.1, 0.7, 0.2) means class 2 most probable
– Appropriate number of outputs for regression
– Equals dimensionality of data (e.g., no of pixels) for generation

• Traditional thinking (not quite right): best to have as few
hidden layers/nodes as possible: better generalisation, less
work

18

NN Architecture: Hidden Layers

• Almost all NNs are organized in layers
• Features or activations: outputs of individual neurons in a

layer (after the nonlinearity)
• How many hidden layers/nodes?

– Universal approximation Theorem: one hidden layer is always enough
• But has infinite width
• We don’t know how to train such a system

– Traditional thinking (not quite right): best to have as few hidden
layers/nodes as possible: better generalisation, less work:
• Make the best guess you can

– If training is unsuccesful try more hidden nodes
– If training is successful perhaps try fewer hidden nodes

– Pruning methods eliminate connections or nodes that contribute little;
is tedious to implement in practice

19

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Check List for Design

• Data arrangement for network training
– Batch-wise data arrangement (batch size)
– Training / validation / test sets

• Network setup
– System level decisions (LLM, diffusion, basic classifier, ...)
– Architecture components (MLP, ResNet, Unet, transformer, etc.)
– Number of input/output nodes
– How many hidden layers how many nodes in each layer

• More layers and neurons will train slower
– Values for the parameters controlling the training process / the

optimisers, e.g., learning rate, initial weights, momentum
– Stopping criteria (validation control) / number of epochs

20

Summary

• Loss functions
– Mean squared error
– Not discussed but common: Mean absolute error
– Cross entropy
– Not discussed: loss functions for unsupervised case

• No known desired output
• We find a local minimum
• Overfitting

• Decisions:
– NN architecture
– Batch size
– Optimiser setting
– Stopping criteria

21

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Cross-entropy
https://en.wikipedia.org/wiki/Overfitting

