COMP307/AIMLA20
INTRODUCTION TO
ARTIFICIAL INTELLIGENCE

More on on objective functions and

practical aspects of neural networks

Outline

Obijective function
— Cross entropy

Weight update frequency
Learning rate

Overfitting

Stopping criteria

Local minima

NN architecture
Momentum

Obijective/Loss Function

Minimising the loss function = finding a good NN
— Loss is function of weights/parameters, typically denoted as 6 or W
Loss function is often written as Jg

The function changes if you change the data set, but the data set
is fixed during the optimisation

Examples:

— Squared (L2) error
* Forregression
« Inits simplest form: J, = X, A(d; — y;)?
— With d; and y; scalars

« More general formulation for vectors: Jo = Y. calld, — Vi lI?
— With d,,, and y,,, vectors;
— Norm squared ||d,,, — y,,||? is sum squared error for vector elements

— Cross entropy
* For classification
» Itis complicated

Entropy

« Consider K symbols with probabilities {p1,p,, ***, P, =+, P}
— For example, letters in a document

* Entropy measures (average) information = disorder

— —log p;, is ground-truth information in observing symbol k
* Is minimum number of bits you need to spend for transmitting “it was
symbol k”
» Letter “x” is rare, (p; small), so observing it provides a lot of information
when reading; —log,(0.0029) = 8.4 bits of information
— Her name has an “x” in itis highly informative (rare)
— Entropy H = —), prlog pi is average information per symbol:
* How many bits we need to spend on average per symbol for a sequence
of symbols each drawn from the distribution {p,,p,,-**, pn}
« Example: the average information per letter in text (without accounting
for dependencies)

http://www.nameplayground.com/?withtype=contain&nameswith=x

Cross Entropy

« Consider K symbols/classes with probabilities {p1,p5,**, i, ***, Pk}

« EntropyisH = — Y, prlog px

« (Cross entropy measures bits to transmit if we use our model instead:
— Model distribution is {q4, g5, ..., gy }; what we think the distribution is
— —log g; is what our model says the information is when we observe symbol k
« How many bits we think we need to spend for transmitting “it was symbol k”
— Cross entropy D = —), nilog g, is average model information per symbol

« How many bits we need to spend on average per symbol for a sequence of symbols
each drawn from the distribution {p,,p,, -, px} if we use our model distribution as a
basis for assigning bits

— Cross entropy is always larger than, or equal to, entropy: D > H

* Hence, if we minimise cross entropy we try to approximate {p{, p,,-**, px} With our
model {CI1; qz, ", qK}

Measuring (Cross) Entropy for Data

Entropy isH = — ., prlog pi

The)., vy part indicates we are averaging over the distribution
— We weight —log p;, proportional to its rate of occurrence

For a database A with data {x} the symbols k will appear
proportional to their probability. Let k,, be the symbol of

observation x, then

|A| is number of data in A (cardinality of A)

We will be sloppy and use “=" in the following

Cross Entropy Loss for Classification |

symbol k can be entire image
We have data pairs (class, input symbol) = (¢, k);

hence D = — X xyp(c k) logq(c, k)
We consider classification problems where each input k, belongs to one class
Rewrite (use product rule): D = — .,y p(k)p(c|k) log (q(clk)p(k))
— q(cl|k) is model probability of class c for input symbol k with (q(k) = p(k))
For data (see previous slide): D = —%pr(cﬂkx) log (q(c, |k,)pn(k,))
— We assumed that averaging data x is like averaging over symbols k

Remove constant p(k,.), loss is: Jo = —)., p(cy|ky) log g(c,|k,)
Observed data one-hot: p(c,|k,) = 0 or p(c,lk,) =1

Can also write Jg = — X Yixea, log q(clky)

— A, is the subset of training data of class ¢

Cross Entropy Loss for Classification |l

Loss function Jg = —)., p(c,|ky) log q(c,lky)

Have a neural network for q(c|k)
— Weights / parameters 6; one output neuron for each class

Ensure that },.g(c|k) = 1 by using softmax on output layer

— Converts any output vector to probabilities: q(c|k) = Ze’;i;cz(’g{)

— Often already integrated into the cross entropy function
Apply SGD to 4 to find parameters of classifier NN g(c|k)

Neural Network Labels

H Q}lg“vv
W Oa
f Wzng O

@

Input Image

AQAQ/ {

Probabilities

Weight Update Frequency

Traditional View:
— With frequency of weight update = frequency of passes

— Online learning: a pass for each new input-output example
* Very slow

— Offline learning: a pass for all the training instances

« Weight change is the sum of the changes for all the training instances
» Slow and often impossible

Batch learning: a pass for a batch (subset of training instances)

— Weight change is the sum of the changes for all instances in the batch
— Now the standard approach

Batch learning leads to stochastic gradient descent (SGD)
Offline learning is true gradient descent

Batch Size

Assuming a weight w = 0.2
4 new training instances

Learning with batch size 1

— Instance 1, Aw = 0.1, w - 0.3

— Instance 2, Aw = 0.05, w — 0.35
— Instance 3, Aw = 0.03, w — 0.38
— Instance 4, Aw = 0.01, w - 0.39

Learning with batch size 4
— Instance 1, Aw = 0.1, w = 0.2 unchanged
— Instance 2, Aw = 0.08, w = 0.2 unchanged

— Instance 3, Aw = —0.03, w = 0.2 unchanged
— Instance 4, Aw = 0.05, w = 0.2 unchanged

— w—02+0.1+0.08-0.03+0.05=0.4
Note that learning rate can scale changes Aw up and down

Epoch and Batch Size

« Epoch: period when all the training instances are used once

* 10000 training instances, batch size = 500, then need 20
iterations to complete one epoch

0.045

0.040 -

0.035

0.030 -

0.025 +

0.020 -

0.015

0.010

0.005 -

0.000
0

10 20 30 40 50

11

More on Learning Rate

Learning rate: Aw;_,; = no;0;(1 — 0;)B;, (sigmoidal case)
Large learning rate may cause oscillating behaviour

Small learning rate may cause slow convergence

Use trial and error to find good value (0.1 — 0.0001 to start)
Use schedule (standard for optimisers in PyTorch, JAX, etc.)

12

° e—e 7 =0.025

J(w) J(w) oo =025
- e—e =25
1.0}

/

w w

Cost

v
v

Large learning rate: Overshooting. Small learning rate: Many iterations
until convergence and trapping in
local minima.

12

Optimisers Use Momentum

« Large NNs may take days or weeks to train
« Optimiser speed is important
« Momentum is standard optimization approach
— Simple example: use gradient from last training step
AWi_>j(t) — T]Oin(l — O])ﬁj + CZAWi_>j(t — 1)
— Choose parameters for problem

Stochastic Gradient Stochastic Gradient
Descent withhout Descent with
Momentum Momentum

 In practice: use an optimiser library, usually Adam; does it for you
— Adam is cited 170.000 times!

13

https://arxiv.org/pdf/1412.6980.pdf%5D

Overfitting

High accuracy on training set, but poor accuracy on test set

Very common problem; caused by

— Training for too long

— Standard argument (so-s0): too many weights (parameters) to train
— Too few training instances

Conventional thinking: the more parameters to train, the
more data (training instances) needed for accuracy

Error .
1 —— Trainine |

¥ ® - test data Validation

@& = test data 0.8 -

& = train data & =train data

0.6

0.4

0.2 " overfitting
l Epochs

20 40 60 80 100

Stopping Criteria

 Traditional:

— When a certain number of epochs is reached

— When the error (e.g., mean/total squared error) on the training set is
smaller than a threshold

— Proportion of correctly classified training instances (i.e. accuracy) is
larger than a threshold

» Early stopping:
— Validation control to avoid overfitting
— Stop when validation error goes back up

Validation Control

Split the training set into training and validation sets:
— We now have training, validation, and test data sets
Use training set to compute the weight changes

Every m (e.g., 10, 50, 100) epochs apply the current NN to
the validation set to calculate the validation error

Stop training when the error on the validation set increases
Only use test set when all is done

Train-Validate-Test Error (in theory)

Training Epoch

Remember: Local Minima

For each weight vector, we can calculate the loss of the NN

The loss surface/landscape can be very irregular: many
local minima

SGD goal: finding a good minimum
Don’t even dream about finding the global minimum

Starting pt.

[Local minima

B i
; u“‘a ||ll\l\ mmw,‘,‘,’,”h\\\\
3 l

g ‘ i W]
n. .‘nmu. '.'»

i »““““ , \ NIHImN
i A c.u|\1lu‘.“"""!ﬂﬂ 0

‘l“\\\'f \

li\mw "J[jmm
i

Global minima

Surface with 2 weights Surface with 1 weight
17

NN Architecture: Inputs/Outputs

How many input and output nodes?

— Usually determined by the problem

— Number of input nodes equals the number of input features
— Number of outputs

— One output node for binary classification (true/false)

— N output nodes for N-class classification; output is (g4, g5, .., qn)
« Example: output (0.1, 0.7, 0.2) means class 2 most probable

— Appropriate number of outputs for regression
— Equals dimensionality of data (e.g., no of pixels) for generation

Traditional thinking (not quite right): best to have as few

hidden layers/nodes as possible: better generalisation, less
work

NN Architecture: Hidden Layers

» Almost all NNs are organized in layers

« Features or activations: outputs of individual neurons in a
layer (after the nonlinearity)

 How many hidden layers/nodes?
— Universal approximation Theorem: one hidden layer is always enough

» But has infinite width
 We don’t know how to train such a system

— Traditional thinking (not quite right): best to have as few hidden
layers/nodes as possible: better generalisation, less work:
« Make the best guess you can
— If training is unsuccesful try more hidden nodes
— If training is successful perhaps try fewer hidden nodes

— Pruning methods eliminate connections or nodes that contribute little;
is tedious to implement in practice

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Check List for Design

- Data arrangement for network training

Batch-wise data arrangement (batch size)
Training / validation / test sets

* Network setup

System level decisions (LLM, diffusion, basic classifier, ...)
Architecture components (MLP, ResNet, Unet, transformer, etc.)
Number of input/output nodes

How many hidden layers how many nodes in each layer
« More layers and neurons will train slower

Values for the parameters controlling the training process / the
optimisers, e.g., learning rate, initial weights, momentum

Stopping criteria (validation control) / number of epochs

20

Summary

Loss functions

— Mean squared error

— Not discussed but common: Mean absolute error

— Cross entropy

— Not discussed: loss functions for unsupervised case
* No known desired output

We find a local minimum
Overfitting

Decisions:

— NN architecture

— Batch size

— Optimiser setting
— Stopping criteria

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Cross-entropy
https://en.wikipedia.org/wiki/Overfitting

