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1. Review of the basic probability rules

2. Bayes Theorem

3. Naïve Bayes Classifier
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Product Rule
𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

The probability of both events occurring is equal to the probability of the 
first event occurring times the probability of the second event occurring 
after the first event has already happened

Example: Probability that we roll two dice 𝐷1 and 𝐷2 and obtain 𝐷1 = 4 
and 𝐷2 = 6. 

𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	𝑃(𝐷1 = 4) 	∗ 	𝑃(𝐷2 = 6	|	𝐷1 = 4)

𝑃(𝐷1 = 4) 	= 	1/6
𝑃(𝐷2 = 6	|	𝐷1 = 4) 	= 	1/6

So, 𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	1/6	 ∗ 	1/6	 = 	1/36

The probability of 𝐷2 = 6 does not change by knowing that we obtained 𝐷1 = 4
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Product Rule
𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

The probability of both events occurring is equal to the probability of the 
first event occurring times the probability of the second event occurring 
after the first event has already happened

Example: Probability that when we roll two dice 𝐷1 and 𝐷2 we obtain 𝐷1 =
4 and 𝐷2 = 6. 

𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	𝑃(𝐷1 = 4) 	∗ 	𝑃(𝐷2 = 6	|	𝐷1 = 4)

𝑃(𝐷1 = 4) 	= 	1/6
𝑃(𝐷2 = 6	|	𝐷1 = 4) 	= 	1/6

So, 𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	1/6	 ∗ 	1/6	 = 	1/36

The probability of 𝐷2 = 6 does not change by knowing that we obtained 𝐷1 = 4
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Product Rule
𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

The probability of both events occurring is equal to the probability of the 
first event occurring times the probability of the second event occurring 
after the first event has already happened

Example: Probability that we roll two dice 𝐷1 and 𝐷2 and obtain 𝐷1 = 4 
and 𝐷2 = 6. 

𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	𝑃(𝐷1 = 4) 	∗ 	𝑃(𝐷2 = 6	|	𝐷1 = 4)

𝑃(𝐷1 = 4) 	= 	1/6
𝑃(𝐷2 = 6	|	𝐷1 = 4) 	= 𝑃(𝐷2 = 6) = 	1/6

So, 𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	1/6	 ∗ 	1/6	 = 	1/36

The probability of 𝐷2 = 6 does not change by knowing that we obtained 𝐷1 = 4
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Product Rule
𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

The probability of both events occurring is equal to the probability of the 
first event occurring times the probability of the second event occurring 
after the first event has already happened

Example: Probability that we roll two dice 𝐷1 and 𝐷2 and obtain 𝐷1 = 4 
and 𝐷2 = 6. 

𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	𝑃(𝐷1 = 4) 	∗ 	𝑃(𝐷2 = 6	|	𝐷1 = 4)

𝑃(𝐷1 = 4) 	= 	1/6
𝑃(𝐷2 = 6	|	𝐷1 = 4) 	= 𝑃(𝐷2 = 6) = 	1/6
The probability of 𝐷2 = 6 does not change by knowing that we obtained 
𝐷1 = 4

So, 𝑃(𝐷1 = 4, 𝐷2 = 6) 	= 	1/6	 ∗ 	1/6	 = 	1/36
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Law of Total Probability
Let 𝑋 and 𝑌 be random variables and let 𝑥 and 𝑦 be the values they can 
take. Then the law of total probability states: 

𝑃 𝑋 = 𝑥 = '
!∈#

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

The probability of an event A occurring can be calculated by summing the 
joint probability of A and other events from a set that partitions the sample 
space over all other events

Example: If we flip two coins (A and B), with random variables the 
probability that A= Tails, or 𝑃(𝐴 = 𝑇)*, can be expressed as 

𝑃(𝐴 = 𝑇) 	= 	𝑃(𝐴 = 𝑇, 𝐵 = 𝑇)	+ 	𝑃(𝐴 = 𝑇, 𝐵 = 𝐻)

R	𝑃 𝐴 = 𝑇 𝐵 = 𝑇 ∗ 	𝑃 𝐵 = 𝑇 +	

7* T = Tails, H = Heads



Law of Total Probability
Let 𝑋 and 𝑌 be random variables and let 𝑥 and 𝑦 be the values they can 
take. Then the law of total probability states: 

𝑃 𝑋 = 𝑥 = '
!∈#

𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

The probability of an event A occurring can be calculated by summing the 
joint probability of A and other events from a set that partitions the sample 
space over all other events

Example: If we flip two coins (A and B), with random variables the 
probability that A= Tails, or 𝑃(𝐴 = 𝑇)*, can be expressed as 

𝑃(𝐴 = 𝑇) 	= 	𝑃(𝐴 = 𝑇, 𝐵 = 𝑇)	+ 	𝑃(𝐴 = 𝑇, 𝐵 = 𝐻)
OCan also be written as
	𝑃 𝐴 = 𝑇 = 	𝑃 𝐴 = 𝑇 𝐵 = 𝑇 ∗ 	𝑃 𝐵 = 𝑇 +	
	 𝑃(𝐴 = 𝑇|𝐵 = 𝐻)	∗ 	𝑃(𝐵 = 𝐻)R	𝑃 𝐴 = 𝑇 𝐵 = 𝑇 ∗ 	𝑃 𝐵 = 𝑇 +	

8* T = Tails, H = Heads



Normalisation Rule

-
!

𝑃(𝑋 = 𝑥) = 1

-
!

𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) = 1

The sum of the probabilities of all values a random variable can take 
must sum to one. This is not changed by conditioning.

Example: If we sum the probabilities of all possible outcomes of a die, we 
obtain 1 (or 100%)
P(D=1)+P(D=2)+P(D=3)+P(D=4)+P(D=5)+P(D=6)
=1/6+1/6+1/6+1/6+1/6+1/6

=6/6=1
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Normalization Rule

-
!

𝑃(𝑋 = 𝑥) = 1

-
!

𝑃 𝑋 = 𝑥	 𝑌 = 𝑦) = 1

The sum of the probabilities of all values a random variable can take 
must sum to one. This is not changed by conditioning.

Example: If we sum the probabilities of all possible outcomes of a die, we 
obtain 1 (or 100%)
𝑃(𝐷 = 1) + 𝑃(𝐷 = 2) + 𝑃(𝐷 = 3) + 𝑃(𝐷 = 4) + 𝑃(𝐷 = 5) + 𝑃(𝐷 = 6)

= 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6

= 𝟔/𝟔 = 𝟏
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Independence
Any of the following conditions implies independence:

P(A	|	B)	=	P(A)
P(B	|	A)	=	P(B)

P(A,	B)	=	P(A)	∗	P(B)

If events A and B are independent, then their joint probability 𝑃(𝐴, 𝐵) is the 
product of their individual probabilities. 

Example: the probability of drawing (with reposition) an Ace from a deck of 
cards does not influence the probability of drawing a King from the deck. 
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Independence
Any of the following conditions implies independence:

P(A	|	B)	=	P(A)
P(B	|	A)	=	P(B)

P(A,	B)	=	P(A)	∗	P(B)

If events A and B are independent, then their joint probability 𝑃(𝐴, 𝐵) is the 
product of their individual probabilities. 

Example: the probability of drawing (with replacement) an Ace from a deck of 
cards does not influence the probability of drawing a King from the deck. 

Example: the probability of drawing (with reposition) an Ace from a deck of 
cards does not influence the probability of drawing a King from the deck. 
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Bayes Theorem

• Describes how to update our beliefs about the probability of an event 
based on new evidence which we represent as 𝑃(𝐴	|	𝐵)	

𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

𝑃 𝐴	 𝐵) =
𝑃 𝐵	 𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
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Thomas Bayes (/ˈbeɪz/; c. 1701 – 7 April 1761)

Remember the Product rule?

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Help:IPA_for_English


• Describes how to update our beliefs about the probability of an event 
based on new evidence which we represent as 𝑃(𝐴	|	𝐵)	

𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

𝑃 𝐴	 𝐵) =
𝑃 𝐵	 𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)

Bayes Theorem
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Thomas Bayes (/ˈbeɪz/; c. 1701 – 7 April 1761)

Product rule

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Help:IPA_for_English


Bayes Theorem Intuition
• The key idea is that our beliefs about the probability of an event should 

be updated given new evidence

• 𝑃(𝐴|𝐵)	is the probability of event A given that event B has occurred (this is 
known as the posterior probability of event A).

• 𝑃(𝐵|𝐴)	is the probability of event B given that event A has occurred (this is 

known as the likelihood of event A). Often known from model or data.

• 𝑃(𝐴)	is the prior probability of event A (i.e., the total probability of A).

• 𝑃(𝐵)	is the prior probability of event B (i.e., the total probability of B).

15

𝑃 𝐴	 𝐵) =
𝑃 𝐵	 𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)



Bayesian Spam Filter

• Easy to measure probability of certain words in spam messages

• We want probability that a message is spam if a set of words occurs

𝑃 	𝑠𝑝𝑎𝑚	 𝑤𝑜𝑟𝑑𝑠) =
𝑃 𝑤𝑜𝑟𝑑𝑠 𝑠𝑝𝑎𝑚)	𝑝(𝑠𝑝𝑎𝑚)

𝑃(𝑤𝑜𝑟𝑑𝑠)

• So if likelihood  𝑃 𝑤𝑜𝑟𝑑𝑠 𝑠𝑝𝑎𝑚) = 0.8 and prior  𝑝 𝑠𝑝𝑎𝑚 = 0.1 and 

𝑃 𝑤𝑜𝑟𝑑𝑠 = 0.5 then posterior 𝑃 	𝑠𝑝𝑎𝑚	 𝑤𝑜𝑟𝑑𝑠) = 0.16

• We can do better! Use naïve Bayes classifiers
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Naïve Bayes Classifier

• Simple but effective probabilistic algorithm that is commonly used for 

classification tasks (often a baseline)

• It can be effective in practice, especially for text classification and other 

applications with high-dimensional feature spaces

• It is computationally efficient, making it suitable for real-time applications 

and large datasets

• “Naïve” because it makes the simplifying assumption that the features 

are conditionally independent given the class label
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Principle of Naïve Bayes Classifier
• Observe a set of features {𝑋$, 𝑋%, ⋯ , 𝑋&}

– Spam words : event “click here” happens, then 𝑋! = 1,	otherwise 𝑋! = 0
• Consider class 𝐶

– Spam 𝐶 = 1	versus not-spam 𝐶 = 0
• Goal: to find class 𝐶 = 𝑐 with highest probability given observations

– Long notation: 𝑃 𝐶 = 𝑐	|	𝑋! = 𝑥!, 𝑋" = 𝑥", ⋯ , 𝑋# = 𝑥#
– Short notation: 𝑝(𝑐	|𝑥!, 𝑥", ⋯ , 𝑥#)
– Determine probability that an email is spam

• Naïve	Bayes:

𝑝 𝑐	 𝑥$, ⋯ , 𝑥& =
𝑝 𝑐 𝑝 	𝑥$, ⋯ , 𝑥&|𝑐

𝑝(𝑥$, ⋯ , 𝑥&)

	 =
𝑝 𝑐 𝑝 𝑥$ 𝑐 ⋯𝑝(𝑥&|𝑐) 

𝑝(𝑥$, ⋯ , 𝑥&)

• We don’t need denominator to find 𝑐 with highest probability → score
18

class conditional feature independence

https://lix-it.com/blog/spam-trigger-words/


Example Naïve Bayes Classifier
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word spam not spam

“urgent” 6 114

“free” 16 39

“success” 0 171

”cheap” 12 7

word class
”urgent” spam

<4 examples “urgent”, spam>
“urgent” spam
“urgent” not spam

<112 examples ”urgent”, not spam>
“urgent” not spam

<other data> 
“free” spam

<14 examples ”urgent”, not spam>
“free” spam
“free” not spam

<37 examples ”urgent”, not spam>
“free” not spam

Original dataset with 4 features and 365 entries

Counters for a dataset with 300 entries of 
which 100 were spam

Counting occurrences in the dataset to find
𝑃 𝑋! = 𝑥! 𝐶 = 𝑐 , ⋯ ,𝑃 𝑋" = 𝑥" 𝐶 = 𝑐  
and 𝑃(𝐶 = 𝑐); in short notation:
 𝑝 𝑥! 𝑐 , 𝑝 𝑥! 𝑐 ,⋯ , 𝑥" 𝑐  and 𝑝(𝑐)



Example Naïve Bayes Classifier

20

word spam not spam

“urgent” 6 114

“free” 16 39

“success” 0 171

”cheap” 12 7

word class
”urgent” spam

<4 examples “urgent”, spam>
“urgent” spam
“urgent” not spam

<112 examples ”urgent”, not spam>
“urgent” not spam

<other data> 
“free” spam

<14 examples ”urgent”, not spam>
“free” spam
“free” not spam

<37 examples ”urgent”, not spam>
“free” not spam

Original dataset with 4 features and 365 entries

Counters for a dataset with 300 entries of 
which 100 were spam

Counting occurrences in the dataset to find
𝑃 𝑋! = 𝑥! 𝐶 = 𝑐 , ⋯ ,𝑃 𝑋" = 𝑥" 𝐶 = 𝑐  
and 𝑃(𝐶 = 𝑐); in short notation:
 𝑝 𝑥! 𝑐 , 𝑝 𝑥! 𝑐 ,⋯ , 𝑥" 𝑐  and 𝑝(𝑐)



Example Naïve Bayes Classifier
• What do the occurrence tables of the example on previous slides show?

– 𝑃 “𝑢𝑟𝑔𝑒𝑛𝑡” = 1	 𝐶 = 𝑠𝑝𝑎𝑚)
– 𝑃 “𝑢𝑟𝑔𝑒𝑛𝑡” = 1	 𝐶 = 𝑛𝑜𝑡	𝑠𝑝𝑎𝑚)

• What the occurrence tables do not show explicitly, but is known:
– 𝑃 “𝑢𝑟𝑔𝑒𝑛𝑡” = 0	 𝐶 = 𝑠𝑝𝑎𝑚) = 1 − 	𝑃 “𝑢𝑟𝑔𝑒𝑛𝑡” = 1	 𝐶 = 𝑠𝑝𝑎𝑚)
– 𝑃 “𝑢𝑟𝑔𝑒𝑛𝑡” = 0	 𝐶 = 𝑛𝑜𝑡	𝑠𝑝𝑎𝑚) = 1 − 	𝑃 “𝑢𝑟𝑔𝑒𝑛𝑡” = 1	 𝐶 = 𝑛𝑜𝑡	𝑠𝑝𝑎𝑚)

• Hence, we can now compute for any email message the numerator of

𝑃 𝐶 = 𝑠𝑝𝑎𝑚	 𝑋! = 𝑥!, ⋯ , 𝑋" = 	𝑥" =
# $%&"'( "(*!%+!|$%&"'()	⋯	"(*"%+"|$%&"'()

"(+!,⋯,+")
 

by computing the probabilities from the occurrence rates in the tables and, 
then filling out the 𝑥1 observed in the table and looking up the computed 
probabilities. The denominator is usually not needed; here we can 
compare spam and not-spam numerators.

• Is the conditional independence assumption reasonable here?

21



Computing the Probabilities
• Data set with 300 entries of which 100 were spam and the counts of the 

table

• 𝑃 “𝑓𝑟𝑒𝑒”	𝑜𝑐𝑐𝑢𝑟𝑠	 𝐶 = 𝑠𝑝𝑎𝑚 = !(“$%&&”	)**+%,,./,!01)	
3(./,!01)

= 45/788
488/788

= 0.16

• 𝑃 𝑛𝑜	“𝑓𝑟𝑒𝑒”	 𝐶 = 𝑠𝑝𝑎𝑚 = 1	 − 0.16 = 	0.84
• Similarly for other values of other features

• 𝑃 	𝐶 = 𝑠𝑝𝑎𝑚 = 488
788

 = 4
7

22

word spam not spam

“urgent” 6 114

“free” 16 39

“success” 0 171

”cheap” 12 7



Naïve Bayes Classifier
• The specific training algorithm (See assignment 3): 
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Naïve Bayes Classifier
• The specific training algorithm (See assignment 3): 
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Naïve Bayes Classifier
• The specific training algorithm (See assignment 3): 
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Naïve Bayes Classifier
• 𝑝 𝑐	 𝑥4, ⋯ , 𝑥! = ! * !(9$|*)	⋯	!(9%|*) 

!(9$,⋯,9%)

• Unfortunately 𝑝 𝑥< 𝑐 = 0 means	𝑝 𝑐	 𝑥4, ⋯ , 𝑥! = 0	

• We simply initialize counts with 1 to avoid 0 probabilities 

(“smoothing”)

• In our example: 

=
𝑃(𝑆𝑢|𝐷)𝑃 𝐷

𝑃(𝑆𝑢)

26

word spam not spam

“urgent” 6 114

“free” 16 39

“success” 0 171

”cheap” 12 7



Naïve Bayes Classifier
• The specific training algorithm (See assignment 3): 
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Naïve Bayes Classifier
• The training algorithm: 

28

Computes:	𝑝 𝑋# = 𝑥# 𝐶 = 𝑐

Computes:	𝑝(𝐶 = 𝑐)



Another Example
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• Another context: approve or decline a loan
• Three features (Job, Deposit, Family)

Applicant Job Deposit Family Class

1 true low single Approve 

2 true low couple Approve 

3 true high single Approve

4 true high single Approve

5 false high couple Approve

6 true low couple Decline

7 false low couple Decline 

8 true low children Decline 

9 false low single Decline 

10 false high children Decline 



A Second Example

• Our objective in the second example is to make a program 
that mimics a loan officer. We use naïve Bayes to define a 
decision based on example data.
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A Second Example
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• Approve or decline a loan
• Three features, job, deposit, family, with 2, 2, 3 values, 

respectively

Class Approve Decline

Total 5 5

Job = true 4 2

Job = false 1 3

Dep = low 2 4

Dep = high 3 1

Fam = single 3 1

Fam = couple 2 2

Fam = children 0 2

Approve Decline

P(Class) 5/10 5/10

P(Job = true | Class) 4/5 2/5

P(Job = false | Class) 1/5 3/5

P(Dep = low | Class) 2/5 4/5

P(Dep = high | Class) 3/5 1/5

P(Fam = single | Class) 3/5 1/5

P(Fam = couple | Class) 2/5 2/5

P(Fam = children | Class) 0/5 2/5



A Second Example

32

Class Approve Decline

Total 5 5

Job = true 4 2

Job = false 1 3

Dep = low 2 4

Dep = high 3 1

Fam = single 3 1

Fam = couple 2 2

Fam = children 0 2

Approve Decline

P(Class) 5/10 5/10

P(Job = true | Class) 4/5 2/5

P(Job = false | Class) 1/5 3/5

P(Dep = low | Class) 2/5 4/5

P(Dep = high | Class) 3/5 1/5

P(Fam = single | Class) 3/5 1/5

P(Fam = couple | Class) 2/5 2/5

P(Fam = children | Class) 0/5 2/5

Feature = Fam
Value = children
Class = Approve

Problem case!



A Second Example
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• Solving the problem of the 0 probabilities: add one to all 
values

Class Approve Decline

Total 6 6

Job = true 5 3

Job = false 2 4

Dep = low 3 5

Dep = high 4 2

Fam = single 4 2

Fam = couple 3 3

Fam = children 1 3

Approve Decline

P(Class) 6/12 6/12

P(Job = true | Class) 5/7 3/7

P(Job = false | Class) 2/7 4/7

P(Dep = low | Class) 3/7 5/7

P(Dep = high | Class) 4/7 2/7

P(Fam = single | Class) 4/8 2/8

P(Fam = couple | Class) 3/8 3/8

P(Fam = children | Class) 1/8 3/8

Solved! Initialized the counters with 1



A Second Example
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• Given a test instance (Job=true,Dep=high,Fam=children)
• Calculate P(Decline | Job=true, Dep=high, Fam=children)
• Calculate P(Approve | Job=true, Dep=high, Fam=children)
• See which probability is higher



Second Example
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• Given a test instance (Job=true,Dep=high,Fam=children)
• Calculate P(Decline | Job=true, Dep=high, Fam=children)
• Calculate P(Approve | Job=true, Dep=high, Fam=children)
• See which probability is higher



A Second Example
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Naïve Bayes Classifier
• Making predictions: 

• For the prediction of each test instance, you need to calculate the score 
(numerator) of the test instance for each class and find the class with the largest 
score. 

• The score of a class 𝑦 is calculated as follows.

• If we have n classes, we will obtain n scores. The class prediction is the class 
 with the highest score.
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Summary

• Introduced the Bayes Theorem 

• Discussed the intuition behind the Bayes Theorem

• Introduced the Naive Bayes Classifier

– The naïve assumption: conditional independence

– Algorithm and some details

Coming up next…

• Bayesian Networks
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