COMP307/AIML420 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Reasoning under uncertainty:

Naïve Bayes Classifier

Outline

1. Review of the basic probability rules
2. Bayes Theorem
3. Naïve Bayes Classifier

- Assumption
- Dealing with zero count

Product Rule

$$
P(A, B)=P(B) * P(A \mid B)=P(A) * P(B \mid A)
$$

The probability of both events occurring is equal to the probability of the first event occurring times the probability of the second event occurring after the first event has already happened

Example: Probability that we roll two dice $D 1$ and $D 2$ and obtain $D 1=4$ and $D 2=6$.

Product Rule

$$
P(A, B)=P(B) * P(A \mid B)=P(A) * P(B \mid A)
$$

The probability of both events occurring is equal to the probability of the first event occurring times the probability of the second event occurring after the first event has already happened

Example: Probability that when we roll two dice $D 1$ and $D 2$ we obtain $D 1=$ 4 and $D 2=6$.
$P(D 1=4, D 2=6)=P(D 1=4) * P(D 2=6 \mid D 1=4)$

Product Rule

$$
P(A, B)=P(B) * P(A \mid B)=P(A) * P(B \mid A)
$$

The probability of both events occurring is equal to the probability of the first event occurring times the probability of the second event occurring after the first event has already happened

Example: Probability that we roll two dice $D 1$ and $D 2$ and obtain $D 1=4$ and $D 2=6$.
$P(D 1=4, D 2=6)=P(D 1=4) * P(D 2=6 \mid D 1=4)$
$P(D 1=4)=1 / 6$
$P(D 2=6 \mid D 1=4)=P(D 2=6)=1 / 6$

Product Rule

$$
P(A, B)=P(B) * P(A \mid B)=P(A) * P(B \mid A)
$$

The probability of both events occurring is equal to the probability of the first event occurring times the probability of the second event occurring after the first event has already happened

Example: Probability that we roll two dice $D 1$ and $D 2$ and obtain $D 1=4$ and $D 2=6$.
$P(D 1=4, D 2=6)=P(D 1=4) * P(D 2=6 \mid D 1=4)$
$P(D 1=4)=1 / 6$
$P(D 2=6 \mid D 1=4)=P(D 2=6)=1 / 6$

The probability of $D 2=6$ does not change by knowing that we obtained D1 $=4$

So, $P(D 1=4, D 2=6)=1 / 6 * 1 / 6=1 / 36$

Law of Total Probability

Let X and Y be random variables and let x and y be the values they can take. Then the law of total probability states:

$$
P(X=x)=\sum_{y \in \Omega} P(X=x, Y=y)
$$

The probability of an event A occurring can be calculated by summing the joint probability of A and other events from a set that partitions the sample space over all other events

Example: If we flip two coins (A and B), with random variables the probability that $\mathrm{A}=$ Tails, or $P(A=T)^{*}$, can be expressed as

$$
P(A=T)=P(A=T, B=T)+P(A=T, B=H)
$$

* T = Tails, H = Heads

Law of Total Probability

Let X and Y be random variables and let x and y be the values they can take. Then the law of total probability states:

$$
P(X=x)=\sum_{y \in \Omega} P(X=x, Y=y)
$$

The probability of an event A occurring can be calculated by summing the joint probability of A and other events from a set that partitions the sample space over all other events

Example: If we flip two coins (A and B), with random variables the probability that $\mathrm{A}=$ Tails, or $P(A=T)^{*}$, can be expressed as

$$
P(A=T)=P(A=T, B=T)+P(A=T, B=H)
$$

Can also be written as

$$
\begin{aligned}
P(A=T)= & P(A=T \mid B=T) * P(B=T)+ \\
& P(A=T \mid B=H) * P(B=H)
\end{aligned}
$$

Normalisation Rule

$$
\begin{gathered}
\sum_{x} P(X=x)=1 \\
\sum_{x} P(X=x \mid Y=y)=1
\end{gathered}
$$

The sum of the probabilities of all values a random variable can take must sum to one. This is not changed by conditioning.

Example: If we sum the probabilities of all possible outcomes of a die, we obtain 1 (or 100\%)

Normalization Rule

$$
\begin{gathered}
\sum_{x} P(X=x)=1 \\
\sum_{x} P(X=x \mid Y=y)=1
\end{gathered}
$$

The sum of the probabilities of all values a random variable can take must sum to one. This is not changed by conditioning.

Example: If we sum the probabilities of all possible outcomes of a die, we obtain 1 (or 100\%)
$P(D=1)+P(D=2)+P(D=3)+P(D=4)+P(D=5)+P(D=6)$
$=1 / 6+1 / 6+1 / 6+1 / 6+1 / 6+1 / 6$
$=6 / 6=1$

Independence

Any of the following conditions implies independence:

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~A}) \\
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B}) \\
\mathrm{P}(\mathrm{~A}, \mathrm{~B})=\mathrm{P}(\mathrm{~A}) * \mathrm{P}(\mathrm{~B})
\end{gathered}
$$

If events A and B are independent, then their joint probability $P(A, B)$ is the product of their individual probabilities.

Independence

Any of the following conditions implies independence:

$$
\begin{gathered}
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~A}) \\
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\mathrm{P}(\mathrm{~B}) \\
\mathrm{P}(\mathrm{~A}, \mathrm{~B})=\mathrm{P}(\mathrm{~A}) * \mathrm{P}(\mathrm{~B})
\end{gathered}
$$

If events A and B are independent, then their joint probability $P(A, B)$ is the product of their individual probabilities.

Example: the probability of drawing (with replacement) an Ace from a deck of cards does not influence the probability of drawing a King from the deck.

Bayes Theorem

- Describes how to update our beliefs about the probability of an event based on new evidence which we represent as $P(A \mid B)$

```
Remember the Product rule?
P(A,B)=P(B)*P(A|B)=P(A)*P(B|A)
```


Thomas Bayes (/'betz/; c. 1701-7 April 1761)

Bayes Theorem

- Describes how to update our beliefs about the probability of an event based on new evidence which we represent as $P(A \mid B)$

Thomas Bayes (/'beiz/; c. 1701-7 April 1761)

Bayes Theorem Intuition

- The key idea is that our beliefs about the probability of an event should be updated given new evidence

$$
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)}
$$

- $\quad P(A \mid B)$ is the probability of event A given that event B has occurred (this is known as the posterior probability of event A).
- $P(B \mid A)$ is the probability of event B given that event A has occurred (this is known as the likelihood of event A). Often known from model or data.
- $P(A)$ is the prior probability of event \mathbf{A} (i.e., the total probability of A).
- $\quad P(B)$ is the prior probability of event \mathbf{B} (i.e., the total probability of B).

Bayesian Spam Filter

- Easy to measure probability of certain words in spam messages
- We want probability that a message is spam if a set of words occurs

$$
P(\text { spam } \mid \text { words })=\frac{P(\text { words } \mid \text { spam }) p(\text { spam })}{P(\text { words })}
$$

- So if likelihood $P($ words \mid spam $)=0.8$ and prior $p($ spam $)=0.1$ and $P($ words $)=0.5$ then posterior $P($ spam \mid words $)=0.16$
- We can do better! Use naïve Bayes classifiers

Naïve Bayes Classifier

- Simple but effective probabilistic algorithm that is commonly used for classification tasks (often a baseline)
- It can be effective in practice, especially for text classification and other applications with high-dimensional feature spaces
- It is computationally efficient, making it suitable for real-time applications and large datasets
- "Naïve" because it makes the simplifying assumption that the features are conditionally independent given the class label

Principle of Naïve Bayes Classifier

- Observe a set of features $\left\{X_{1}, X_{2}, \cdots, X_{p}\right\}$
- Spam words : event "click here" happens, then $X_{1}=1$, otherwise $X_{1}=0$
- Consider class C
- Spam $C=1$ versus not-spam $C=0$
- Goal: to find class $C=c$ with highest probability given observations
- Long notation: $P\left(C=c \mid X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{p}=x_{p}\right)$
- Short notation: $p\left(c \mid x_{1}, x_{2}, \cdots, x_{p}\right)$
- Determine probability that an email is spam
- Naïve Bayes:

$$
p\left(c \mid x_{1}, \cdots, x_{p}\right)=\frac{p(c) p\left(x_{1}, \cdots, x_{p} \mid c\right)}{p\left(x_{1}, \cdots, x_{p}\right)}
$$

class conditional feature independence

$$
=\frac{p(c) p\left(x_{1} \mid c\right) \cdots p\left(x_{p} \mid c\right)}{p\left(x_{1}, \cdots, x_{p}\right)}
$$

- We don't need denominator to find c with highest probability \rightarrow score

Example Naïve Bayes Classifier

word	class
"urgent"	spam
<4 examples "urgent", spam>	
"urgent"	spam
"urgent"	
<112 examples "urgent", not spam>	not spam
"urgent"	
<other data> spam	
"free"	
<14 examples "urgent", not spam>	
"free"	
"free"	
<37 examples "urgent", not spam>	
"free"	
not spam	

word	spam	not spam
"urgent"	6	114
"free"	16	39
"success"	0	171
"cheap"	12	7

Counters for a dataset with 300 entries of which 100 were spam

Counting occurrences in the dataset to find $P\left(X_{1}=x_{1} \mid C=c\right), \cdots, P\left(X_{p}=x_{p} \mid C=c\right)$ and $P(C=c)$; in short notation: $p\left(x_{1} \mid c\right), p\left(x_{1} \mid c\right), \cdots,\left(x_{p} \mid c\right)$ and $p(c)$

Original dataset with 4 features and 365 entries

Example Naïve Bayes Classifier

word	class
"urgent"	spam
<4 examples "urgent", spam>	
"urgent"	
"urgent"	
<112 examples "urgent", not spam>	
"urgent"	
<other data>	
"free"	
<14 examples "urgent", not spam>	
"free"	
"free"	
<37 examples "urgent", not spam>	
"free"	

word	spam	not spam
"urgent""	6	114
"free"	16	39
"succes	"	0
"cheap"	12	7

Counters for a dataset with 300 entries of which 100 were spam

Counting occurrences in the dataset to find $P\left(X_{1}=x_{1} \mid C=c\right), \cdots, P\left(X_{p}=x_{p} \mid C=c\right)$ and $P(C=c)$; in short notation: $p\left(x_{1} \mid c\right), p\left(x_{1} \mid c\right), \cdots,\left(x_{p} \mid c\right)$ and $p(c)$

Original dataset with 4 features and 365 entries

Example Naïve Bayes Classifier

- What do the occurrence tables of the example on previous slides show?
- $P($ "urgent" $=1 \mid C=$ spam $)$
- $P($ "urgent" $=1 \mid C=$ not spam $)$
- What the occurrence tables do not show explicitly, but is known:
- $P($ "urgent" $=0 \mid C=$ spam $)=1-P(" u r g e n t "=1 \mid C=$ spam $)$
- $P($ "urgent" $=0 \mid C=$ not spam $)=1-P(" u r g e n t "=1 \mid C=$ not spam $)$
- Hence, we can now compute for any email message the numerator of

$$
\begin{aligned}
P\left(C=\operatorname{spam} \mid X_{1}=\right. & \left.x_{1}, \cdots, X_{p}=x_{p}\right)= \\
& \frac{P(C=\operatorname{spam}) p\left(X_{1}=x_{1} \mid C=\text { spam }\right) \cdots p\left(X_{p}=x_{p} \mid C=\text { spam }\right)}{p\left(x_{1}, \cdots, x_{p}\right)}
\end{aligned}
$$

by computing the probabilities from the occurrence rates in the tables and, then filling out the x_{i} observed in the table and looking up the computed probabilities. The denominator is usually not needed; here we can compare spam and not-spam numerators.

- Is the conditional independence assumption reasonable here?

Computing the Probabilities

- Data set with 300 entries of which 100 were spam and the counts of the table

word	spam	not spam
"urgent"	6	114
"free"	16	39
"success"	0	171
"cheap"	12	7

- $P($ "free" occurs $\mid C=$ spam $)=\frac{p \text { ("free" occurs }, C=\text { spam })}{P(C=s p a m)}=\frac{16 / 300}{100 / 300}=0.16$
- $P($ no "free" $\mid C=$ spam $)=1-0.16=0.84$
- Similarly for other values of other features
- $P(C=$ spam $)=\frac{100}{300}=\frac{1}{3}$

Naïve Bayes Classifier

- The specific training algorithm (See assignment 3):

```
Algorithm 1: Training of the Naive Bayes Classifier
    Input: The training set.
    Output: A probability table.
    // Initialise the count numbers to 1.
    for each class label \(y\) do
        \(\operatorname{count}(y)=1\);
        for each feature \(X_{i}\) do
            for each possible value \(x_{i}\) of feature \(X_{i}\) do
            \(\operatorname{count}\left(X_{i}, x_{i}, y\right)=1 ;\)
    // Count the numbers of each class and feature value based on the training
        instances.
6 for each training instance \(\left[X_{1}=x_{i}, \ldots, X_{n}=x_{n}, Y=y\right]\) do
\(7 \quad \operatorname{count}(y)=\operatorname{count}(y)+1\);
8 for each feature \(X_{i}\) do
            \(\left\lfloor\operatorname{count}\left(X_{i}, x_{i}, y\right)=\operatorname{count}\left(X_{i}, x_{i}, y\right)+1 ;\right.\)
    // Calculate the total/denominators.
10 class_total \(=0\);
11 for each class label \(y\) do
        class_total \(=\) class_total + count \((y)\);
        for each feature \(X_{i}\) do
            total \(\left(X_{i}, y\right)=0\);
            for each possible value \(x_{i}\) of feature \(X_{i}\) do
                \(\operatorname{total}\left(X_{i}, y\right)=\operatorname{total}\left(X_{i}, y\right)+\operatorname{count}\left(X_{i}, x_{i}, y\right) ;\)
    // Calculate the probabilities from the counting numbers.
    for each class label \(y\) do
        \(\operatorname{prob}(y)=\) count \((y) /\) class_total;
        for each feature \(X_{i}\) do
            for each possible value \(x_{i}\) of feature \(X_{i}\) do
            \(\operatorname{prob}\left(X_{i}, x_{i}, y\right)=\operatorname{count}\left(X_{i}, x_{i}, y\right) / \operatorname{total}\left(X_{i}, y\right) ;\)
22 return prob;
```


Naïve Bayes Classifier

- The specific training algorithm (See assignment 3):

```
Algorithm 1: Training of the Naive Bayes Classifier
    Input: The training set.
    Output: A probability table.
    // Initialise the count numbers to 1.
    for each class label y do
        count(y)=1;
        for each feature Xi
            for each possible value }\mp@subsup{x}{i}{}\mathrm{ of feature }\mp@subsup{X}{i}{}\mathrm{ do
                count(X},\mp@subsup{X}{i}{},\mp@subsup{x}{i}{},y)=1
    // Count the numbers of each class and feature value based on the training
        instances.
    6 for each training instance [ }\mp@subsup{X}{1}{}=\mp@subsup{x}{i}{},\ldots,\mp@subsup{X}{n}{}=\mp@subsup{x}{n}{},Y=y]\mathrm{ do
    7 
    8 for each feature }\mp@subsup{X}{i}{}\mathrm{ do
```



```
    // Calculate the total/denominators.
10 class_total = 0;
11 for each class label y do
        class_total = class_total + count (y);
        for each feature Xi do
            total (Xi,y)=0;
            for each possible value }\mp@subsup{x}{i}{}\mathrm{ of feature }\mp@subsup{X}{i}{}\mathrm{ do
                total(Xi,y)=total(Xi,y)+\operatorname{count}(\mp@subsup{X}{i}{},\mp@subsup{x}{i}{},y);
    // Calculate the probabilities from the counting numbers.
    for each class label y do
        prob}(y)=\mathrm{ count(y)/class_total;
        for each feature Xi
            for each possible value }\mp@subsup{x}{i}{}\mathrm{ of feature }\mp@subsup{X}{i}{}\mathrm{ do
            prob}(\mp@subsup{X}{i}{},\mp@subsup{x}{i}{},y)=\operatorname{count}(\mp@subsup{X}{i}{},\mp@subsup{x}{i}{},y)/\operatorname{total}(\mp@subsup{X}{i}{},y)
    return prob;
```


Naïve Bayes Classifier

- The specific training algorithm (See assignment 3):

```
Algorithm 1: Training of the Naive Bayes Classifier
    Input: The training set.
    Output: A probability table.
    // Initialise the count numbers to 1.
    for each class label y do
        count(y)=1;
        for each feature }\mp@subsup{X}{i}{}\mathrm{ do
            for each possible value }\mp@subsup{x}{i}{}\mathrm{ of feature }\mp@subsup{X}{i}{}\mathrm{ do
                Lcount(Xi, xi,y)=1;
    // Count the numbers of each class and feature value based on the trainjng
        instances.
    for each training inst
    count(y)= count
        for each feature X
            count(Xi, xi,y
    // Calculate the
    class_total = 0;
11 for each class label y
        class_total =clas
        for each feature X
            total (Xi,y)=
            for each possi
                total(Xi,y
    // Calculate the
    for each class label y
        prob(y)=count(y
        for each feature
            for each possible value }\mp@subsup{x}{i}{}\mathrm{ of feature }\mp@subsup{X}{i}{}\mathrm{ do
            Lprob (Xi, xi,y)=count(Xi, (Xi,y)/total(Xi,y);
    return prob;
```


Naïve Bayes Classifier

- $p\left(c \mid x_{1}, \cdots, x_{p}\right)=\frac{p(c) p\left(x_{1} \mid c\right) \cdots p\left(x_{p} \mid c\right)}{p\left(x_{1}, \cdots, x_{p}\right)}$
- Unfortunately $p\left(x_{i} \mid c\right)=0$ means $p\left(c \mid x_{1}, \cdots, x_{p}\right)=0$
- We simply initialize counts with 1 to avoid 0 probabilities ("smoothing")

word	spam	not spam
"urgent"	6	114
"free"	16	39
"success"	0	171
"cheap"	12	7

Naïve Bayes Classifier

- The specific training algorithm (See assignment 3):

```
Algorithm 1: Training of the Naive Bayes Classifier
    Input: The training set.
    Output: A probability table.
    // Initialise the count numbers to 1 .
    for each class label \(y\) do
        \(\operatorname{count}(y)=1\);
        for each feature \(X_{i}\) do
            for each possible value \(x_{i}\) of feature \(X_{i}\) do
            \(\operatorname{count}\left(X_{i}, x_{i}, y\right)=1 ;\)
    // Count the numbers of each class and feature value based on the training
        instances.
    6 for each training instance \(\left[X_{1}=x_{i}, \ldots, X_{n}=x_{n}, Y=y\right]\) do
    \(7 \quad \operatorname{count}(y)=\operatorname{count}(y)+1\);
    8 for each feature \(X_{i}\) do
        \(\left\lfloor\operatorname{count}\left(X_{i}, x_{i}, y\right)=\operatorname{count}\left(X_{i}, x_{i}, y\right)+1 ;\right.\)
    // Calculate the total/denominators.
    class_total \(=0\);
    for each class label \(y\) do
        class_total \(=\) class_total + count \((y)\);
        for each feature \(X_{i}\) do
            total \(\left(X_{i}, y\right)=0\);
            for each possible value \(x_{i}\) of feature \(X_{i}\) do
                \(\operatorname{total}\left(X_{i}, y\right)=\operatorname{total}\left(X_{i}, y\right)+\operatorname{count}\left(X_{i}, x_{i}, y\right) ;\)
    // Calculate the probabilities from the counting numbers.
    for each class label \(y\) do
        \(\operatorname{prob}(y)=\) count \((y) /\) class_total;
        for each feature \(X_{i}\) do
            for each possible value \(x_{i}\) of feature \(X_{i}\) do
            \(\operatorname{prob}\left(X_{i}, x_{i}, y\right)=\operatorname{count}\left(X_{i}, x_{i}, y\right) / \operatorname{total}\left(X_{i}, y\right) ;\)
    return prob;
```


Naïve Bayes Classifier

- The training algorithm:
// Calculate the total/denominators.
10 class_total $=0$;
11 for each class label y do
12 class_total $=$ class_total + count (y);
13 for each feature X_{i} do
$14 \quad \operatorname{total}\left(X_{i}, y\right)=0$;
$15 \quad$ for each possible value x_{i} of feature X_{i} do
16

$$
\operatorname{total}\left(X_{i}, y\right)=\operatorname{total}\left(X_{i}, y\right)+\operatorname{count}\left(X_{i}, x_{i}, y\right)
$$

// Calculate the probabilities from the counting numbers.
17 for each class label y do
$18 \quad \operatorname{prob}(y)=$ count $(y) /$ class_total; \quad Computes: $p(C=c)$
19 for each feature X_{i} do
20
for each possible value x_{i} of feature X_{i} do $\operatorname{prob}\left(X_{i}, x_{i}, y\right)=\operatorname{count}\left(X_{i}, x_{i}, y\right) / \operatorname{total}\left(X_{i}, y\right) ;$

Computes: $p\left(X_{i}=x_{i} \mid C=c\right)$
22 return prob;

Another Example

- Another context: approve or decline a loan
- Three features (Job, Deposit, Family)

Applicant	Job	Deposit	Family	Class
$\mathbf{1}$	true	low	single	Approve
$\mathbf{2}$	true	low	couple	Approve
$\mathbf{3}$	true	high	single	Approve
$\mathbf{4}$	true	high	single	Approve
$\mathbf{5}$	false	high	couple	Approve
$\mathbf{6}$	true	low	couple	Decline
$\mathbf{7}$	false	low	couple	Decline
$\mathbf{8}$	true	low	children	Decline
$\mathbf{9}$	false	low	single	Decline
$\mathbf{1 0}$	false	high	children	Decline

A Second Example

- Our objective in the second example is to make a program that mimics a loan officer. We use naïve Bayes to define a decision based on example data.

A Second Example

- Approve or decline a loan
- Three features, job, deposit, family, with 2, 2, 3 values, respectively

Class	Approve	Decline
Total	5	5
Job = true	4	2
Job = false	1	3
Dep = low	2	4
Dep = high	3	1
Fam = single	3	1
Fam = couple	2	2
Fam = children	0	2

	Approve	Decline
P(Class)	$5 / 10$	$5 / 10$
$P($ Job = true \| Class)	$4 / 5$	$2 / 5$
P (Job = false \| Class)	$1 / 5$	$3 / 5$
P (Dep = low \| Class)	$2 / 5$	$4 / 5$
P (Dep = high \| Class)	$3 / 5$	$1 / 5$
$P($ Fam = single \| Class)	$3 / 5$	$1 / 5$
P (Fam = couple \| Class)	$2 / 5$	$2 / 5$
$P($ Fam = children \| Class)	$0 / 5$	$2 / 5$

A Second Example

Class	Approve	Decline
Total	5	5
Job = true	4	2
Job = false	1	3
Dep = low	2	4
Dep = high	3	1
Fam = single	3	1
Fam = couple	2	2
Fam = children	0	2

	Approve	Decline
P(Class)	$5 / 10$	$5 / 10$
P (Job = true \| Class)	$4 / 5$	$2 / 5$
P (Job = false \| Class)	$1 / 5$	$3 / 5$
$P($ Dep = low \| Class)	$2 / 5$	$4 / 5$
P (Dep = high \| Class)	$3 / 5$	$1 / 5$
P (Fam = single \| Class)	$3 / 5$	$1 / 5$
P (Fam = couple \| Class)	$2 / 5$	$2 / 5$
$P($ Fam = children \| Class)	$0 / 5$	$2 / 5$

$$
\begin{aligned}
\text { Problem case! } & \begin{array}{l}
\text { Feature }=\text { Fam } \\
\text { Value }=\text { children }
\end{array} \\
& \text { Class }=\text { Approve }
\end{aligned}
$$

A Second Example

- Solving the problem of the 0 probabilities: add one to all values

Class	Approve	Decline
Total	6	6
Job = true	5	3
Job = false	2	4
Dep = low	3	5
Dep = high	4	2
Fam = single	4	2
Fam = couple	3	3
Fam = children	1	3

	Approve	Decline
P(Class)	$6 / 12$	$6 / 12$
P (Job = true \| Class)	$5 / 7$	$3 / 7$
$P($ Job = false \| Class)	$2 / 7$	$4 / 7$
P (Dep = low \| Class)	$3 / 7$	$5 / 7$
$P($ Dep = high \| Class)	$4 / 7$	$2 / 7$
P (Fam = single \| Class)	$4 / 8$	$2 / 8$
P (Fam = couple \| Class)	$3 / 8$	$3 / 8$
P (Fam = children \| Class)	$1 / 8$	$3 / 8$

Solved! Initialized the counters with 1

A Second Example

- Given a test instance (Job=true,Dep=high,Fam=children)
- Calculate P(Decline I Job=true, Dep=high, Fam=children)
- Calculate P(Approve I Job=true, Dep=high, Fam=children)
- See which probability is higher

$$
\begin{aligned}
& P(\text { Decline } \mid \text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children }) \\
= & \frac{P(\text { Decline }) * P(\text { Job }=\text { true }, \text { Dep }=\text { high,Fam }=\text { children } \mid \text { Decline })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children })} \\
= & \frac{P(\text { Decline }) * P(\text { Job }=\text { true } \mid \text { Decline }) * P(\text { Dep }=\text { high } \mid \text { Decline }) * P(\text { Fam }=\text { children } \mid \text { Decline })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children })} \\
= & \left.\frac{3 / 7 \times 2 / 7 \times 3 / 8 \times 1 / 2}{P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children } ~}\right) \\
= & \frac{0.0230}{P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children })}
\end{aligned}
$$

Second Example

- Given a test instance (Job=true,Dep=high,Fam=children)
- Calculate P(Decline I Job=true, Dep=high, Fam=children)
- Calculate P(Approve I Job=true, Dep=high, Fam=children)
- See which probability is higher

$$
\begin{aligned}
& P(\text { Approve } \mid \text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children }) \\
= & \frac{P(\text { Approve }) * P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children } \mid \text { Approve })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children })} \\
= & \frac{P(\text { Approve }) * P(\text { Job }=\text { true } \mid \text { Approve }) * P(\text { Dep }=\text { high } \mid \text { Approve }) * P(\text { Fam }=\text { children } \mid \text { Approve })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children })} \\
= & \frac{5 / 7 \times 4 / 7 \times 1 / 8 \times 1 / 2}{P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children })} \\
= & \frac{0.0255}{P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children })}
\end{aligned}
$$

A Second Example

$$
\begin{aligned}
& P(\text { Approve } \mid \text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children }) \\
= & \frac{P(\text { Approve }) * P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children } \mid \text { Approve })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children })} \\
= & \frac{P(\text { Approve }) * P(\text { Job }=\text { true } \mid \text { Approve }) * P(\text { Dep }=\text { high } \mid \text { Approve }) * P(\text { Fam }=\text { children } \mid \text { Approve })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children })} \\
= & \frac{5 / 7 \times 4 / 7 \times 1 / 8 \times 1 / 2}{P(\text { Job }=\text { true }, \text { Dep }=\text { hiah.Fam }=\text { children })} \\
= & \frac{0.0255}{P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children })}
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { Decline } \mid \text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children }) \\
= & \frac{P(\text { Decline }) * P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children } \mid \text { Decline })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children })} \\
= & \frac{P(\text { Decline }) * P(\text { Job }=\text { true } \mid \text { Decline }) * P(\text { Dep }=\text { high } \mid \text { Decline }) * P(\text { Fam }=\text { children } \mid \text { Decline })}{P(\text { Job }=\text { true }, \text { Dep }=\text { high, Fam }=\text { children })} \\
= & \frac{3 / 7 \times 2 / 7 \times 3 / 8 \times 1 / 2}{P(\text { Job }=\text { true }, \text { Dep }=\text { high,Fam }=\text { children })} \\
= & \frac{0.0230}{P(\text { Job }=\text { true }, \text { Dep }=\text { high }, \text { Fam }=\text { children })}
\end{aligned}
$$

Naïve Bayes Classifier

- Making predictions:
- For the prediction of each test instance, you need to calculate the score (numerator) of the test instance for each class and find the class with the largest score.
- The score of a class y is calculated as follows.

```
Algorithm 2: Calculation of the class score.
    Input: A test instance \(\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right.\) ], a class label \(y\), the probability table prob.
    Output: The score.
    1 score \(=\operatorname{prob}(y)\);
    2 for each feature \(X_{i}\) do
    \(3\left\lfloor\right.\) score \(=\) score \(* \operatorname{prob}\left(X_{i}, x_{i}, y\right)\);
    4 return score;
```

- If we have n classes, we will obtain n scores. The class prediction is the class with the highest score.

Summary

- Introduced the Bayes Theorem
- Discussed the intuition behind the Bayes Theorem
- Introduced the Naive Bayes Classifier
- The naïve assumption: conditional independence
- Algorithm and some details

Coming up next...

- Bayesian Networks

