COMP307/AIML420 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Reasoning under uncertainty:

Bayesian Networks

Outline

- Review of Bayes Theorem and Naïve Bayes
- Introduction to Bayesian Networks

Review

Product rule: $P(A,B) = P(B) * P(A \mid B) = P(A) * P(B \mid A)$

Bayes theorem:

 Provides a way to calculate the probability of a <u>hypothesis</u> (e.g., label) given some <u>evidence</u> (e.g., feature values).

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Naïve Bayes:

- Probabilistic classifier
- Training: count and store <u>priors</u> and <u>likelihoods</u>
- Assumes features are conditionally independent given the class label

Review

Product rule: $P(A,B) = P(B) * P(A \mid B) = P(A) * P(B \mid A)$

Bayes theorem:

Provides a way to calculate the probability of a <u>hypothesis</u> (e.g., class label) given some <u>evidence</u> (e.g., feature values).

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

- Naïve Bayes:
- Probabilistic classifier
- Training: count and store priors and likelihoods
- Assumes features are conditionally independent given the class label

Review

Naïve Bayes:

$$p(c | x_1, \dots, x_p) = \frac{p(c)p(x_1, \dots, x_p | c)}{p(x_1, \dots, x_p)}$$

class conditional feature independence

$$= \frac{p(c)p(x_1|c)\cdots p(x_p|c)}{p(x_1,\cdots,x_p)}$$

- We don't need denominator to find c with highest probability
 - Use score

In classification we know the priors and the likelihoods for the training data

Example:

- Class *C* = **sunny** (true/false)
- Features: season (spring/summer/fall/winter), humidity (high/low)
- Want to compute determine

if sunny=true or sunny=false given that humidity = high, season = summer

- Probabilities needed:
 - P(season=summer I sunny=true) : count instances where season = summer and class label sunny = true and divide by total number of instances where sunny = true
 - P(season=summer I sunny=false)
 - P(humidity =high I sunny=true)
 - P(humidity =high I sunny=false)
 - P(sunny=true): count the instances sunny=true and divide by the total number of instances
 - P(sunny=false)
- What is the conditional independence assumption? Is it reasonable?
- Why do we calculate a score instead of the posterior probability P(A|B)?

Given an instance x = (season = Summer, humidity = high), we need to calculate:

```
P(sunny = True \mid season = Summer, humidity = high)
```

$$P(sunny = False | season = Summer, humidity = high)$$

Given an instance x = (season = Summer, humidity = high), we need to calculate:

```
P(sunny = True \mid season = Summer, humidity = high)

P(sunny = False \mid season = Summer, humidity = high)
```

```
P(sunny = True \mid season = Summer, humidity = high) = P(season = Summer, humidity = high \mid sunny = True) * P(sunny = True)/P(season = Summer, humidity = high)
```

Given an instance x = (season = Summer, humidity = high), we need to calculate:

```
P(sunny = True \mid season = Summer, humidity = high)

P(is\_sunny = False \mid season = Summer, humidity = high)
```

```
P(sunny = True \mid season = Summer, humidity = high) = P(season = Summer, humidity = high \mid sunny = True) * 
P(sunny = True) / 
P(season = Summer, humidity = high)
```

 $P(season = Summer \mid sunny = True) P(humidity = high \mid sunny = True)$

Given an instance x = (season = Summer, humidity = high), we need to calculate:

```
P(sunny = True \mid season = Summer, humidity = high)

P(is\_sunny = False \mid season = Summer, humidity = high)
```

```
P(sunny = True \mid season = Summer, humidity = high) = P(season = Summer, humidity = high \mid sunny = True) * 
P(sunny = True) / 
P(season = Summer, humidity = high) 
calculating P(X) not needed for class label
```

 $P(season = Summer \mid sunny = True) P(humidity = high \mid sunny = True)$

Given an instance x = (season = Summer, humidity = high), we need to calculate:

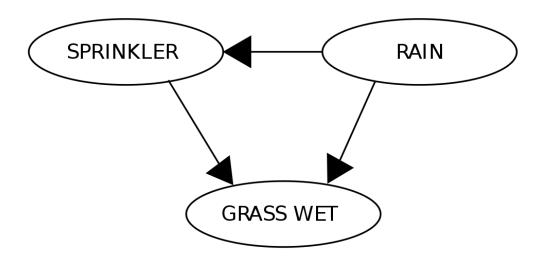
```
P(sunny = true \mid season = summer, humidity = high)

P(sunny = false \mid season = summer, humidity = high)
```

```
score(sunny = true | season = summ, hum = high) = P(season = summ | sunny = true) * P(hum = high | sunny = true) * P(sunny = true)
```

Bayesian Networks

- Bayesian networks (BNs) are a type of probabilistic graphical model
 that represents the joint probability distribution over a set of random
 variables and their conditional dependencies using a directed acyclic
 graph (DAG).
- Node: a random variable
- **Edge:** represent *causal* dependencies between nodes



12

Given an electric fan, suppose you try to turn it on, but it doesn't spin (not working).

Why is the fan not spinning?

- Faulty fan: the fan is broken
- Faulty plug: the plug is broken
- A phone charger connected to the same plug works well
- "Faulty Fan and Faulty Plug are marginally independent; however, they become conditionally dependent, given Fan." [1]

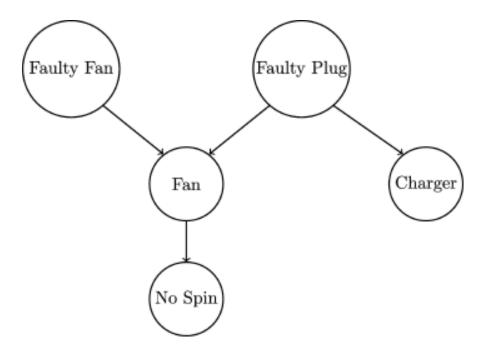


Figure: Simple BN [1]

Given an electric fan, suppose you try to turn it on, but it doesn't spin (not working).

Why is the fan not spinning?

- Faulty fan: the fan is broken
- Faulty plug: the plug is broken
- A phone charger connected to the same plug works well
- "Faulty Fan and Faulty Plug are marginally independent; however, they become conditionally dependent, given Fan." [1]
- Important concepts:
 - (marginally) independent: if we know the (marginal) probability distribution of one variable, it does not affect the probability distribution of the other variable
 - <u>conditionally independent</u>: the variables are independent when another variable is known

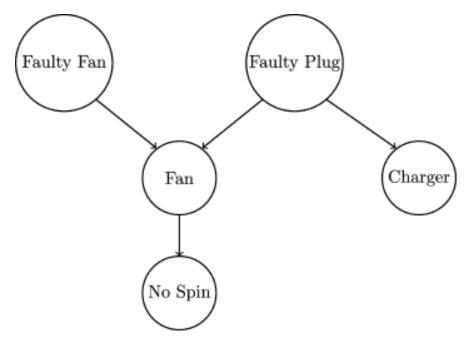


Figure: Simple BN [1]

Given an electric fan, suppose you try to turn it on, but it doesn't spin (not working).

Why is the fan not spinning?

- Faulty fan: the fan is broken
- Faulty plug: the plug is broken
- A phone charger connected to the same plug works well
- "Faulty Fan and Faulty Plug are marginally independent; however, they become conditionally dependent, given Fan." [1]
- Important concepts:
 - (marginally) independent: if we know the (marginal) probability distribution of one variable, it does not affect the probability distribution of the other variable
 - <u>conditionally independent</u>: the variables are independent when another variable is known

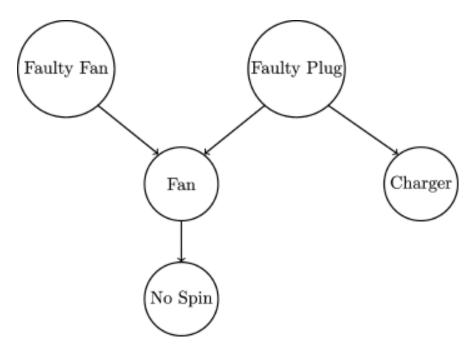


Figure: Simple BN [1]

BN models the joint probability distribution of a set of random variables by decomposing it into a product of conditional probabilities

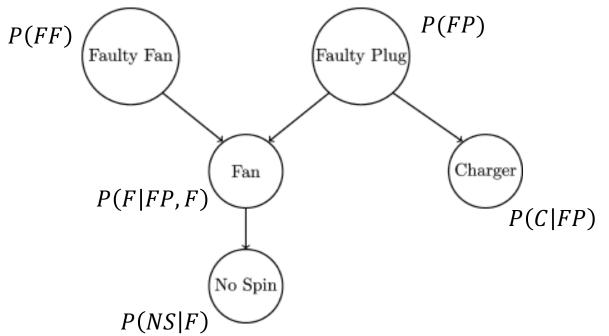
Work backward from the bottom to obtain:

$$P(FF,FP,F,C,NS) = P(NS|FF,FP,F,C)P(FF,FP,F,C)$$

$$= P(NS|F)P(F|FP,F,C)P(FF,FP,C)$$

$$= P(NS|F)P(F|FP,F)P(C|FF,FP)P(FF,FP)$$

$$= P(NS|F)P(F|FP,F)P(C|FP)P(FF)P(FP)$$



```
P(FF,FP,F,C,NS) = P(NS|FF,FP,F,C)P(FF,FP,F,C)
= P(NS|F)P(F|FP,F,C)P(FF,FP,C)
= P(NS|F)P(F|FP,F)P(C|FF,FP)P(FF,FP)
= P(NS|F)P(F|FP,F)P(C|FP)P(FF)P(FP)
```

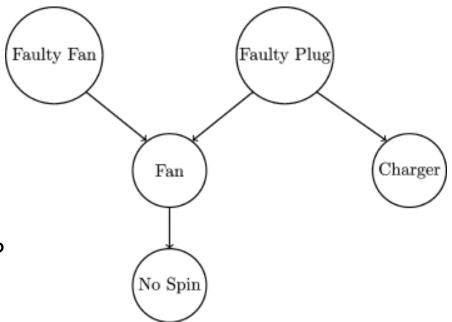
- All features have two states. Five features. Joint probability P(FF, FP, F, C, NS) has table with 32 entries (31 sufficient).
- Instead, we have five tables with 2+4+2+1+1 = 10 entries.
 - For example, P(NS|F) has 2 entries; exploit that P(NS = 0|F) = 1 P(NS = 1|F) so store only one of these.
- Fewer parameters, hence fewer data needed for their estimation. Parameters replaced with structural knowledge.
 - More robust results.

Useful rule:

 Given the parents of a node A, the node A is independent of its non-descendants

Which are true?

FF and FP are independent
FF and FP independent given F
F and C are independent
F and C are independent given FP
NS and C are independent
NS and C are independent given FP
NS and C are independent given FP
NS and C are independent given F



Yes, no, no, yes, no, yes, yes

Modelling the relationship between Sprinkler, Rain and Grass Wet

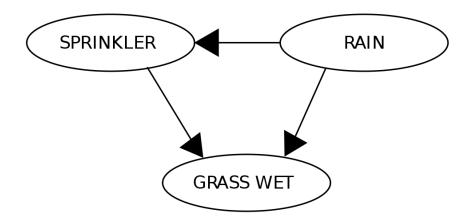
 Two events can cause the grass to become wet (Rain=True or Sprinkler=True)

Modelling the relationship between Sprinkler, Rain and Grass Wet

 Two events can cause the grass to become wet (Rain=True or Sprinkler=True) • If Rain=True, then Sprinkler is unlikely to be True

Modelling the relationship between Sprinkler, Rain and Grass Wet

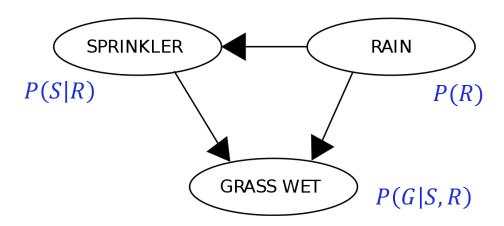
 Two events can cause the grass to become wet (Rain=True or Sprinkler=True) • If Rain=True, then Sprinkler is unlikely to be True



21

Modelling the relationship between **Sprinkler**, **Rain** and **Grass Wet** Let G = "Grass wet", S = "Sprinkler turned on", and R = "Raining". Joint probability is:

$$P(R,S,G) = P(G|S,R) P(S,R) = P(G|S,R) P(S|R) P(R)$$

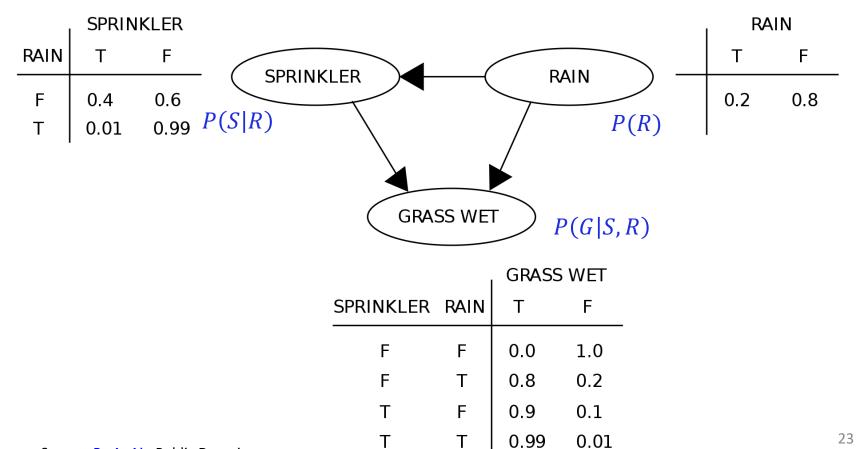


Modelling the relationship between **Sprinkler**, **Rain** and **Grass Wet**

Let G = "Grass wet", S = "Sprinkler turned on", and R = "Raining". Joint probability is:

Source: By AnAj - Public Domain

$$P(R, S, G) = P(G|S, R) P(S, R) = P(G|S, R) P(G|S, R) (S|R) P(R)$$



0.99

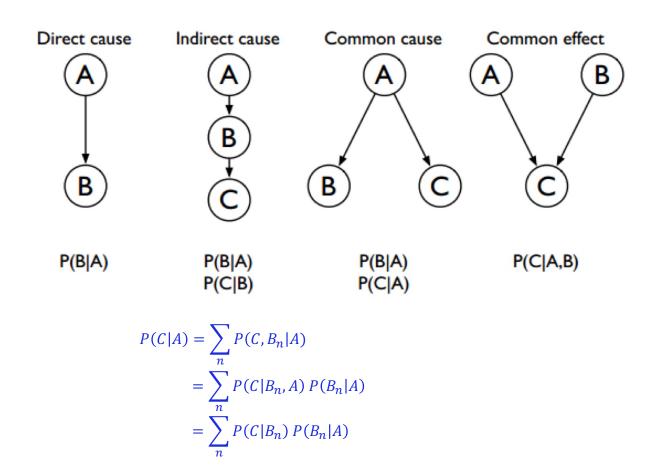
23

Why Bayesian Networks?

- The model encodes dependencies among all variables
- A BN can be used to learn causal relationships, and hence gain understanding about a problem domain and to predict the consequences of intervention
- The model has both a causal and probabilistic semantics, it is an ideal representation for combining prior knowledge (which often comes in causal form) and data
- Bayesian statistical methods in conjunction with Bayesian networks offer an efficient and principled approach for reduce the overfitting of data. (As it enforces a presumably correct structure.)
- A BN requires typically far fewer parameters and hence less storage than a full joint probability distribution

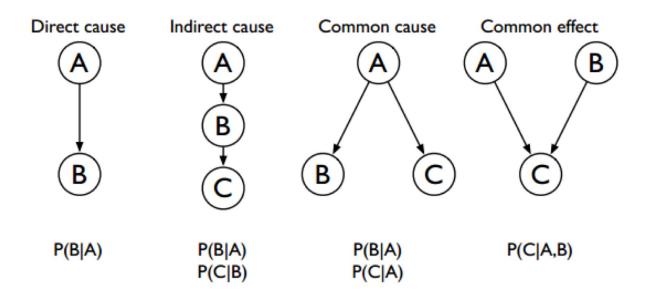
(In)Dependencies in BN

- [Direct cause]: A is a direct cause of B
 - A and B are dependent
- [Indirect cause]: A direct cause of B, B direct cause of C
 - A and C are independent given B



(In)Dependencies in BN

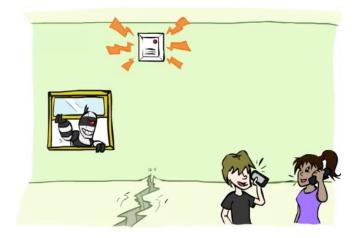
- [Common Cause]: A is a common direct cause of B and C
 - B and C are dependent (if A is not given)
 - B and C are independent given A
- [Common Effect]: C is a common direct effect of A and B
 - A and B are independent (if C is not given)
 - A and B are dependent given C ("explaining away")



- Your house has an alarm against burglary
 - The alarm will usually be set off by burglars
 - Sometimes it may also be set off by earthquakes
 - There are two neighbours, John and Mary
 - John and Mary might call you when they hear the alarm
 - They might also call you for other issues without alarm

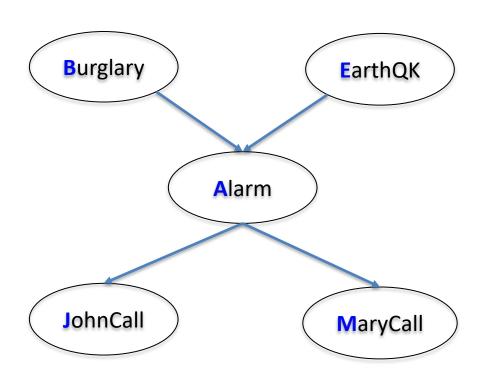
Variables:

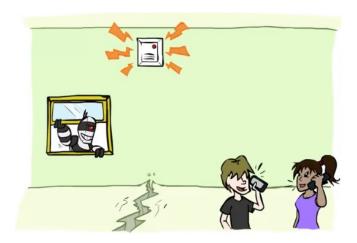
- Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- All binary (true or false)
- Relationship between them?
 - Cause -> Effect



Alarm Network

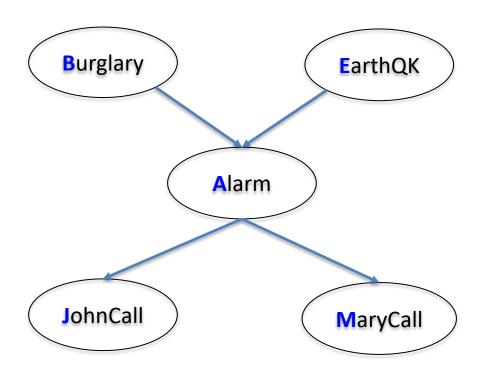
- Domain causal knowledge (causes and effects)
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call





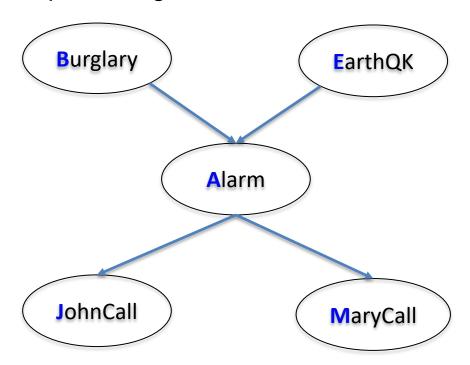
(In)Dependencies in BN

 Recall: given the parents of a node A, the node A is independent of its non-descendants



(In)Dependencies in BN

- Which are true?
 - B and E are independent
 - B and E are independent given A
 - B and M are independent
 - B and M are independent given A
 - J and M are independent
 - J and M are independent given A

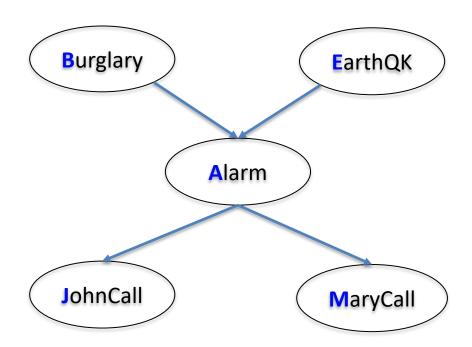


Factorisation

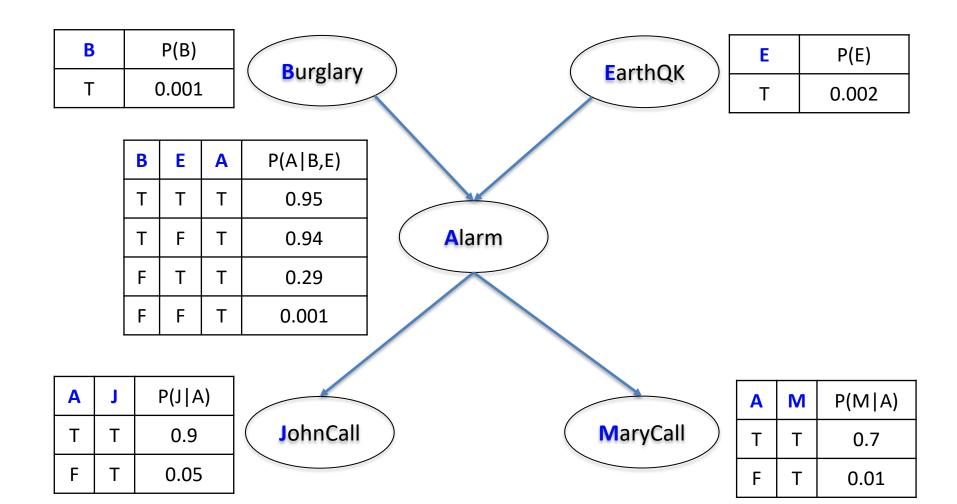
$$P(M,J,A,E,B) = P(M,J,A|E,B)P(E,B)$$

= $P(M,J,A|E,B)P(E)P(B)$
= $P(M,J|A,E,B)P(A|E,B)P(E)P(B)$
= $P(M,J|A)P(A|E,B)P(E)P(B)$
= $P(M|A)P(J|A)P(A|E,B)P(E)P(B)$

- Each conditional probability is a node.
- Table with 32 entries becomes tables with 2+2+4+1+1=10 entries



Alarm Network

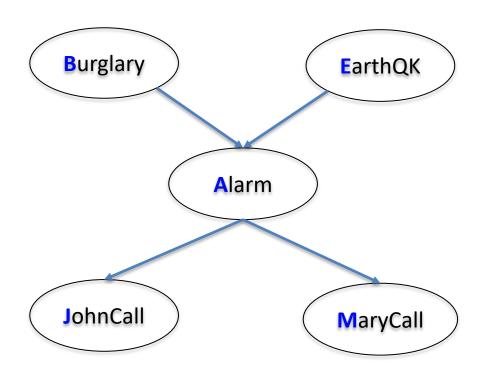


Factorisation

 To factorise according to a Bayesian network: sort the variables so that the causes are always before the effects, e.g., [B, E, A, J, M], then use the rules:

$$- P(X_i \mid X_1, \dots, X_{i-1}) = P(X_i \mid \text{parents}(X_i), \dots, X_j, \dots)$$
$$= P(X_i \mid \text{parents}(X_i))$$

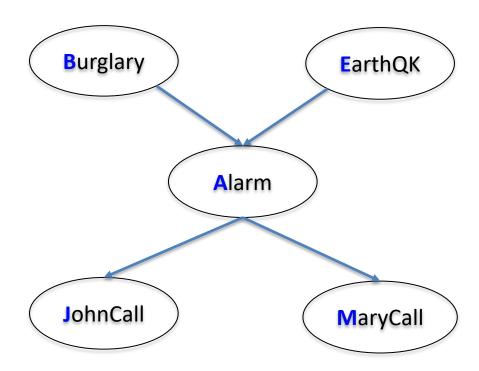
 $-P(X_i \mid X_j) = P(X_i)$ if X_i and X_j independent



Factorisation

- We saw repeated application of the product rule gives P(M,J,A,E,B) = P(M|A)P(J|A)P(A|E,B)P(E)P(B)
- The joint probability distribution over all variables in the network can be represented as a product of the conditional probabilities of each variable given its parents:

$$P(X_1, \dots, X_n) = P(X_n | \text{parents}(X_n)) P(X_{n-1} | \text{parents}(X_{n-1})) \dots$$



Summary

- Conditionally independent given class label (NB)
- Bayes Net = Topology (graph) + Local Conditional Probabilities
- Factorisation

Coming up next...

More on Bayesian Networks (Build a BN, # free parameters, ...)