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Reasoning under uncertainty:

Bayesian Networks



Outline

* Review of Bayes Theorem and Naive Bayes

* Introduction to Bayesian Networks



Review

Product rule: P(4,B) = P(B) = P(A|B) = P(4) = P(B|A)

Bayes theorem:

« Provides a way to calculate the probability of a hypothesis (e.g., label)
given some evidence (e.g., feature values).

P(B|A) «P(A)
P(B)

P(A|B) =

Naive Bayes:

* Probabilistic classifier

« Training: count and store priors and likelihoods

» Assumes features are conditionally independent given the class label




Review

Product rule: P(4,B) = P(B) = P(A|B) = P(4) = P(B|A)

Bayes theorem:

* Provides a way to calculate the probability of a hypothesis (e.g., class
label) given some evidence (e.g., feature values).

Naive Bayes:
- Probabilistic classifier

- Training: count and store(priors anddikelihoods)

- Assumes features are conditionally independent given the class label




Review
* Naive Bayes:

p(A)p( x1, -, xplc)
p(xy, ", Xp)

p(c g, xp) =
class conditional feature independence

N p(c)p(xqlc) - p(xplc)
p(x1,,Xp)

« We don’t need denominator to find ¢ with highest probability

— Use score



Review: Naive Bayes

» In classification we know the priors and the likelihoods for the training data

« Example:
- Class C = sunny (true/false)
- Features: season (spring/summer/fall/winter), humidity (high/low)
- Want to compute determine
if sunny=true or sunny=false given that humidity = high, season = summer

- Probabilities needed:

- P(season=summer | sunny=true) : count instances where season = summer and class label
sunny = true and divide by total number of instances where sunny = true

- P(season=summer | sunny=false)

humidity =high | sunny=true)

humidity =high | sunny=false)

sunny=true) : count the instances sunny=true and divide by the total number of instances

P(
P(
P(
P(sunny=false)

« What is the conditional independence assumption? Is it reasonable?
 Why do we calculate a score instead of the posterior probability P(A|B)?



Review: Naive Bayes

Given an instance x = (season=Summer,humidity=high), we need to calculate:

P(sunny = True | season = Summer, humidity = high)

P(sunny = False| season = Summer, humidity = high)



Review: Naive Bayes

Given an instance x = (season=Summer,humidity=high), we need to calculate:

P(sunny = True | season = Summer, humidity = high)

P(sunny = False| season = Summer, humidity = high)

P(sunny = True | season = Summer, humidity = high) =
P(season = Summer, humidity = high | sunny = True) =
P(sunny = True)/

P(season = Summer, humidity = high)



Review: Naive Bayes

Given an instance x = (season=Summer,humidity=high), we need to calculate:

P(sunny = True | season = Summer, humidity = high)

P(is_sunny = False| season = Summer, humidity = high)

P(sunny = True | season = Summer, humidity = high) =

P(season = Summer, humidity = high | sunny = True) =

P(sunny = True)/
P(season = Summer, humidity = high)

%

P(season = Summer | sunny = True) P(humidity = high | sunny = True)

Conditional independence assumption. Is it reasonable?



Review: Naive Bayes

Given an instance x = (season=Summer,humidity=high), we need to calculate:

P(sunny = True | season = Summer, humidity = high)

P(is_sunny = False| season = Summer, humidity = high)

P(sunny = True | season = Summer, humidity = high) =

P(season = Summer, humidity = high | sunny = True) =

P(sunny = True)/

¥

P(season = Summer | sunny = True) P(humidity = high | sunny = True)

conditional independence assumption
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Review: Naive Bayes

Given an instance x = (season=Summer,humidity=high), we need to calculate:

P(sunny = true | season = summer, humidity = high)

P(sunny = false| season = summer, humidity = high)

score(sunny = true |season = summ, hum = high)=
P(season = summ | sunny = true) *
P(hum = high | sunny = true) *
P(sunny = true)
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Bayesian Networks

Bayesian networks (BNs) are a type of probabilistic graphical model

that represents the joint probability distribution over a set of random
variables and their conditional dependencies using a directed acyclic

graph (DAG).
Node: a random variable

Edge: represent causal dependencies between nodes

Source: By AnAj - Public Domain


https://commons.wikimedia.org/w/index.php?curid=19734596

BN Example 1

Given an electric fan, suppose you try to turn it on, but it doesn’t spin (not working).
Why is the fan not spinning?

Faulty fan: the fan is broken

Faulty plug: the plug is broken

A phone charger connected to the
same plug works well

“Faulty Fan and Faulty Plug are marginally

independent; however, they become
conditionally dependent, given Fan.” [1]

Faulty Fan

Figure: Simple BN [1]
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BN Example 1

Given an electric fan, suppose you try to turn it on, but it doesn’t spin (not working).
Why is the fan not spinning?

Faulty fan: the fan is broken

Faulty plug: the plug is broken

Faulty Fan
A phone charger connected to the
same plug works well

“Faulty Fan and Faulty Plug are marginally

independent; however, they become
conditionally dependent, given Fan.” [1]

Important concepts:

— (marginally) independent: if we know the
(marginal) probability distribution of one
variable, it does not affect the probability
distribution of the other variable

Figure: Simple BN [1]

— conditionally independent: the variables are
independent when another variable is
known
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BN Example 1

Given an electric fan, suppose you try to turn it on, but it doesn’t spin (not working).
Why is the fan not spinning?

Faulty fan: the fan is broken

Faulty plug: the plug is broken Faulty Fan

A phone charger connected to the
same plug works well

“Faulty Fan and Faulty Plug are marginally

independent; however, they become
conditionally dependent, given Fan.” [1]

Important concepts:

— (marginally) independent: if we know the
(marginal) probability distribution of one
variable, it does not affect the probability
distribution of the other variable

Figure: Simple BN [1]

— conditionally independent: the variables are
independent when another variable is BN models the joint probability
known distribution of a set of random
variables by decomposing it into a

product of conditional probabilities
15
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BN Example 1
 Work backward from the bottom to obtain:
P(FF,FP,F,C,NS) = P(NS| FF,FP,F,C )P(FF,FP,F,C)
= P(NS|F)P(F|FP,F,C)P(FF,FP,(C)
= P(NS|F)P(F|FP,F)P(C|FF,FP)P(FF,FP)
= P(NS|F)P(F|FP,F)P(C|FP)P(FF)P(FP)

P(F|FP,F) o(CIFP)

P(NS|F)

16



BN Example

P(FF,FP,F,C,NS) = P(NS|FF,FP,F,C )P(FF,FP,F,C)
= P(NS|F)P(F|FP,F,C)P(FF,FP,(C)
= P(NS|F)P(F|FP,F)P(C|FF,FP)P(FF,FP)
= P(NS|F)P(F|FP,F)P(C|FP)P(FF)P(FP)
All features have two states. Five features. Joint probability
P(FF,FP,F,C,NS) has table with 32 entries (31 sufficient).
Instead, we have five tables with 2+4+2+1+1 = 10 entries.
— For example, P(NS|F) has 2 entries; exploit that
P(NS =0|F) =1— P(NS = 1|F) so store only one of these.
Fewer parameters, hence fewer data needed for their

estimation. Parameters replaced with structural knowledge.
— More robust results.




BN Example

Useful rule:

* Given the parents of a node A, the node A is independent of its
non-descendants

Which are true? @ @
FF and FP are independent

FF and FP independent given F

F and C are independent
F and C are independent given FP

NS and C are independent
NS and C are independent given FP
NS and C are independent given F @

Yes, no, no, yes, no, yes, yes
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BN Example 2

Modelling the relationship between Sprinkler, Rain and Grass Wet

Two events can cause the grass to
become wet (Rain=True or
Sprinkler=True)

19



BN Example 2

Modelling the relationship between Sprinkler, Rain and Grass Wet

Two events can cause the grass to * If Rain=True, then Sprinkler is
become wet (Rain=True or unlikely to be True
Sprinkler=True)

20



BN Example 2

Modelling the relationship between Sprinkler, Rain and Grass Wet

Two events can cause the grass to « If Rain=True, then Sprinkler is
become wet (Rain=True or unlikely to be True
Sprinkler=True)

Source: By AnAj - Public Domain
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https://commons.wikimedia.org/w/index.php?curid=19734596

BN Example 2

Modelling the relationship between Sprinkler, Rain and Grass Wet
Let G = "Grass wet", S = "Sprinkler turned on", and R = "Raining" .
Joint probability is:
P(R,S,G) = P(G|S,R) P(S,R) = P(G|S,R)P(S|R)P(R)

P(SIR) P(R)

P(G|S,R)

22
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https://commons.wikimedia.org/w/index.php?curid=19734596

BN Example 2

Modelling the relationship between Sprinkler, Rain and Grass Wet
Let G = "Grass wet", S = "Sprinkler turned on", and R = "Raining" .
Joint probability is:

P(R,S,G) = P(G|S,R) P(S,R) = P(GI[S,R)P(GI|S,R)(S|R)P(R)

SPRINKLER RAIN
RAIN| T F T F
F 0.4 0.6 0.2 0.8
T | 001 o099 P(SIR) P(R)
P(G|S,R)
GRASS WET
SPRINKLER RAIN| T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
\' | 23
Source: By AnAj - Public Domain T T 0.99 0.01



https://commons.wikimedia.org/w/index.php?curid=19734596

Why Bayesian Networks?

The model encodes dependencies among all variables

A BN can be used to learn causal relationships, and
hence gain understanding about a problem domain and
to predict the consequences of intervention

The model has both a causal and probabilistic semantics,
it is an ideal representation for combining prior
knowledge (which often comes in causal form) and data

Bayesian statistical methods in conjunction with Bayesian
networks offer an efficient and principled approach for
reduce the overfitting of data. (As it enforces a
presumably correct structure.)

A BN requires typically far fewer parameters and hence
less storage than a full joint probability distribution



(In)Dependencies in BN

[Direct cause]: A is a direct cause of B
— A and B are dependent

[Indirect cause]: A direct cause of B, B direct cause of C
— Aand C are independent given B

Direct cause Indlrect cause Common cause Common effect

6 AN/

® © ©

P(B|A) I':(EI';; II:((gﬁ) P(C|A.B)
(Cl )

P(C|A) = ZP(C, Bal4)
_ ZP(CIBn,A) P(B,l4)

=) P(CIBy) P(By14) 25



(In)Dependencies in BN

 [Common Cause]: Ais a common direct cause of B and C

— B and C are dependent (if A is not given)
— B and C are independent given A

« [Common Effect]: C is a common direct effect of Aand B
— A and B are independent (if C is not given)
— A and B are dependent given C (“explaining away”)

Direct cause Indirect cause Common cause Common effect

® ®
5 ® © ©

P(B|A) ::((B:I/g; ::((glli) P(C|A.B)
(Cl )
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BN Example 3

Your house has an alarm against burglary
— The alarm will usually be set off by burglars
— Sometimes it may also be set off by earthquakes
— There are two neighbours, John and Mary
— John and Mary might call you when they hear the alarm
— They might also call you for other issues without alarm

Variables:
— Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
— All binary (true or false)

Relationship between them?
— Cause -> Effect




Alarm Network

 Domain causal knowledge (causes and effects)
— Aburglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call

Burglary

28



(In)Dependencies in BN

* Recall: given the parents of a node A, the node A is
independent of its non-descendants

Burglary




(In)Dependencies in BN

* Which are true?
— B and E are independent
— B and E are independent given A
— B and M are independent
— B and M are independent given A
— J and M are independent
— J and M are independent given A

Burglary




Factorisation

P(M,],AE,B) =P(M,],A| E,B)P(E,B)
=P(M,],A|E,B) P(E)P(B)
= P(M,]J|A, E,B)P(A|E,B)P(E)P(B)
= P(M,J|A)P(A|E,B)P(E)P(B)
= P(M|A)P(J|A)P(A|E, B)P(E)P(B)
Each conditional probability is a node.

 Table with 32 entries becomes tables with 2+2+4+1+1=10 entries

Burglary




Alarm Network

P(B)
B|E|A| P(A|BE)
T|T|T 0.95
TIF|T 0.94
FITI|T 0.29
FIFI|T 0.001
PUIA)

0.9

0.05

P(E)

0.002

P(M]A)

0.7

0.01
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Factorisation

« To factorise according to a Bayesian network: sort the
variables so that the causes are always before the effects,
e.qg., [B, E, A, J, M], then use the rules:

— P(X; | X1, Xi—1) = P(X; | parents(Xy), -, X;, )
= P(X; | parents(X;))

— P(X; | X;) = P(X;) if X; and X; independent

Burglary

33



Factorisation

« We saw repeated application of the product rule gives
P(M,],A E,B) =PM|A)P(J|A)P(A|E,B)P(E)P(B)

* The joint probability distribution over all variables in the
network can be represented as a product of the conditional

probabilities of each variable given its parents:
P(X1,+,Xn) = P(Xp|parents(X;))P(X;,_1|parents(X,_;)) -

Burglary
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Summary

Conditionally independent given class label (NB)

Bayes Net = Topology (graph) + Local Conditional Probabilities
Factorisation

Coming up next...

More on Bayesian Networks (Build a BN, # free parameters, ...)



