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Outline

• Review of Bayes Theorem and Naïve Bayes

• Introduction to Bayesian Networks
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Review
Product rule: 𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

Bayes theorem: 
• Provides a way to calculate the probability of a hypothesis (e.g., label) 

given some evidence (e.g., feature values).

Naïve Bayes: 
• Probabilistic classifier
• Training: count and store priors and likelihoods
• Assumes features are conditionally independent given the class label
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Product rule: 𝑃(𝐴, 𝐵) 	= 	𝑃(𝐵) 	∗ 	𝑃(𝐴	|	𝐵) 	= 	𝑃(𝐴) 	∗ 	𝑃(𝐵	|	𝐴)

Bayes theorem: 
• Provides a way to calculate the probability of a hypothesis (e.g., class 

label) given some evidence (e.g.,  feature values).

Naïve Bayes: 
- Probabilistic classifier
- Training: count and store priors and likelihoods
- Assumes features are conditionally independent given the class label
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Review

• Naïve	Bayes:

𝑝 𝑐	 𝑥!, ⋯ , 𝑥" =
𝑝 𝑐 𝑝 	𝑥!, ⋯ , 𝑥"|𝑐

𝑝(𝑥!, ⋯ , 𝑥")

	 =
𝑝 𝑐 𝑝 𝑥! 𝑐 ⋯𝑝(𝑥"|𝑐) 

𝑝(𝑥!, ⋯ , 𝑥")

• We don’t need denominator to find 𝑐 with highest probability

– Use score
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class conditional feature independence



Review: Naïve Bayes
• In classification we know the priors and the likelihoods for the training data

• Example:
- Class 𝐶 = sunny (true/false)
- Features: season (spring/summer/fall/winter), humidity (high/low)
- Want to compute determine 
                          if sunny=true or sunny=false given that ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = ℎ𝑖𝑔ℎ, 𝑠𝑒𝑎𝑠𝑜𝑛 = 𝑠𝑢𝑚𝑚𝑒𝑟
- Probabilities needed:

- P(season=summer | sunny=true) : count instances where season = summer and class label 
sunny = true and divide by total number of instances where sunny = true

- P(season=summer | sunny=false)
- P(humidity =high | sunny=true)
- P(humidity =high | sunny=false)
- P(sunny=true) : count the instances sunny=true and divide by the total number of instances
- P(sunny=false)

• What is the conditional independence assumption? Is it reasonable?
• Why do we calculate a 𝑠𝑐𝑜𝑟𝑒 instead of the posterior probability 𝑃(𝐴|𝐵)?  
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Review: Naïve Bayes
Given an instance x = (season=Summer,humidity=high), we need to calculate: 
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𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)
𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝐹𝑎𝑙𝑠𝑒|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)



Review: Naïve Bayes
Given an instance x = (season=Summer,humidity=high), we need to calculate: 
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𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)
𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝐹𝑎𝑙𝑠𝑒|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)

𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ) =	
𝑃 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ	 𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒) 	∗	

𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒)/
𝑃(𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)

*



Review: Naïve Bayes
Given an instance x = (season=Summer,humidity=high), we need to calculate: 
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𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)
𝑃(𝒊𝒔_𝒔𝒖𝒏𝒏𝒚 = 𝐹𝑎𝑙𝑠𝑒|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)

𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ) =	
𝑃 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ	 𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒) 	∗	

𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒)/
𝑃(𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)

𝑃 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟	 𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒)	𝑃 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ	 𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒)	

Conditional independence assumption. Is it reasonable?



Review: Naïve Bayes
Given an instance x = (season=Summer,humidity=high), we need to calculate: 
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𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)
𝑃(𝒊𝒔_𝒔𝒖𝒏𝒏𝒚 = 𝐹𝑎𝑙𝑠𝑒|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)

𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ) =	
𝑃 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ	 𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒) 	∗	

𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒)/
𝑃(𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)

𝑃 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑆𝑢𝑚𝑚𝑒𝑟	 𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒)	𝑃 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ	 𝒔𝒖𝒏𝒏𝒚 = 𝑇𝑟𝑢𝑒)	

conditional independence assumption

calculating P(X) not needed for class label



Review: Naïve Bayes
Given an instance x = (season=Summer,humidity=high), we need to calculate: 
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𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑡𝑟𝑢𝑒	|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑠𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)
𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑓𝑎𝑙𝑠𝑒|	𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑠𝑢𝑚𝑚𝑒𝑟, 𝒉𝒖𝒎𝒊𝒅𝒊𝒕𝒚 = ℎ𝑖𝑔ℎ)

score 𝒔𝒖𝒏𝒏𝒚 = 𝑡𝑟𝑢𝑒	 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑠𝑢𝑚𝑚,𝒉𝒖𝒎 = ℎ𝑖𝑔ℎ)=
𝑃 𝒔𝒆𝒂𝒔𝒐𝒏 = 𝑠𝑢𝑚𝑚	 𝒔𝒖𝒏𝒏𝒚 = 𝑡𝑟𝑢𝑒) ∗

𝑃 𝒉𝒖𝒎 = ℎ𝑖𝑔ℎ	 𝒔𝒖𝒏𝒏𝑦 = 𝑡𝑟𝑢𝑒)	*
	 𝑃(𝒔𝒖𝒏𝒏𝒚 = 𝑡𝑟𝑢𝑒)



Bayesian Networks
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• Bayesian networks (BNs) are a type of probabilistic graphical model 
that represents the joint probability distribution over a set of random 
variables and their conditional dependencies using a directed acyclic 
graph (DAG).

• Node: a random variable

• Edge: represent causal dependencies between nodes

Source: By AnAj - Public Domain

https://commons.wikimedia.org/w/index.php?curid=19734596


BN Example 1
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Given an electric fan, suppose you try to turn it on, but it doesn’t spin (not working). 
Why is the fan not spinning? 

[1] Yang, Xin-She. Introduction to algorithms for data mining and machine learning. Academic press, 2019.

Figure: Simple BN [1]

• Faulty fan: the fan is broken
• Faulty plug: the plug is broken
• A phone charger connected to the 

same plug works well
• “Faulty Fan and Faulty Plug are marginally 

independent; however, they become 
conditionally dependent, given Fan.” [1]
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variable, it does not affect the probability 
distribution of the other variable
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independent when another variable is 
known



BN Example 1
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Given an electric fan, suppose you try to turn it on, but it doesn’t spin (not working). 
Why is the fan not spinning? 

[1] Yang, Xin-She. Introduction to algorithms for data mining and machine learning. Academic press, 2019.

Figure: Simple BN [1]

• Faulty fan: the fan is broken
• Faulty plug: the plug is broken
• A phone charger connected to the 

same plug works well
• “Faulty Fan and Faulty Plug are marginally 

independent; however, they become 
conditionally dependent, given Fan.” [1]

• Important concepts:
– (marginally) independent: if we know the 

(marginal) probability distribution of one 
variable, it does not affect the probability 
distribution of the other variable

– conditionally independent: the variables are 
independent when another variable is 
known

BN models the joint probability 
distribution of a set of random 

variables by decomposing it into a 
product of conditional probabilities



BN Example 1
• Work backward from the bottom to obtain:
		𝑃 𝐹𝐹, 𝐹𝑃, 𝐹, 𝐶, 𝑁𝑆  = 𝑃 𝑁𝑆|	𝐹𝐹, 𝐹𝑃, 𝐹, 𝐶	 P(𝐹𝐹, 𝐹𝑃, 𝐹, 𝐶)	

	 = 𝑃 𝑁𝑆 𝐹 𝑃 𝐹 𝐹𝑃, 𝐹, 𝐶 𝑃(𝐹𝐹, 𝐹𝑃, 𝐶)
                                = 𝑃 𝑁𝑆 𝐹 𝑃 𝐹 𝐹𝑃, 𝐹 𝑃 𝐶 𝐹𝐹, 𝐹𝑃 𝑃 𝐹𝐹, 𝐹𝑃
                                = 𝑃 𝑁𝑆 𝐹 𝑃 𝐹 𝐹𝑃, 𝐹 𝑃 𝐶 𝐹𝑃 𝑃 𝐹𝐹 𝑃(𝐹𝑃)
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𝑃 𝑁𝑆 𝐹

𝑃 𝐹 𝐹𝑃, 𝐹
𝑃 𝐶 𝐹𝑃

𝑃 𝐹𝐹 𝑃(𝐹𝑃)



BN Example

		𝑃 𝐹𝐹, 𝐹𝑃, 𝐹, 𝐶, 𝑁𝑆  = 𝑃 𝑁𝑆|	𝐹𝐹, 𝐹𝑃, 𝐹, 𝐶	 P(𝐹𝐹, 𝐹𝑃, 𝐹, 𝐶)	
	 = 𝑃 𝑁𝑆 𝐹 𝑃 𝐹 𝐹𝑃, 𝐹, 𝐶 𝑃(𝐹𝐹, 𝐹𝑃, 𝐶)

                                = 𝑃 𝑁𝑆 𝐹 𝑃 𝐹 𝐹𝑃, 𝐹 𝑃 𝐶 𝐹𝐹, 𝐹𝑃 𝑃 𝐹𝐹, 𝐹𝑃
                 = 𝑃 𝑁𝑆 𝐹 𝑃 𝐹 𝐹𝑃, 𝐹 𝑃 𝐶 𝐹𝑃 𝑃 𝐹𝐹 𝑃(𝐹𝑃)
• All features have two states. Five features. Joint probability 
𝑃 𝐹𝐹, 𝐹𝑃, 𝐹, 𝐶, 𝑁𝑆 	has table with 32 entries (31 sufficient).

• Instead, we have five tables with 2+4+2+1+1 = 10 entries.
– For example, 𝑃 𝑁𝑆 𝐹  has 2 entries; exploit that
       𝑃 𝑁𝑆 = 0 𝐹) = 1 − 𝑃(𝑁𝑆 = 1|𝐹  so store only one of these.

• Fewer parameters, hence fewer data needed for their 
estimation. Parameters replaced with structural knowledge.
– More robust results.
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BN Example
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Useful rule:
 

• Given the parents of a node A, the node A is independent of its 
non-descendants

Which are true?
FF and FP are independent 
FF and FP independent given F
F and C are independent
F and C are independent given FP
NS and C are independent
NS and C are independent given FP
NS and C are independent given F

Yes, no, no, yes, no, yes,  yes



BN Example 2
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Modelling the relationship between Sprinkler, Rain and Grass Wet

• Two events can cause the grass to 
become wet (Rain=True or 
Sprinkler=True)



BN Example 2
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Modelling the relationship between Sprinkler, Rain and Grass Wet

• Two events can cause the grass to 
become wet (Rain=True or 
Sprinkler=True)

• If Rain=True, then Sprinkler is 
unlikely to be True
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Modelling the relationship between Sprinkler, Rain and Grass Wet

• Two events can cause the grass to 
become wet (Rain=True or 
Sprinkler=True)

• If Rain=True, then Sprinkler is 
unlikely to be True

Source: By AnAj - Public Domain

https://commons.wikimedia.org/w/index.php?curid=19734596


BN Example 2
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Modelling the relationship between Sprinkler, Rain and Grass Wet

Source: By AnAj - Public Domain

Let G = "Grass wet", S = "Sprinkler turned on", and R = "Raining" . 
Joint probability is:

𝑃 𝑅, 𝑆, 𝐺 = 𝑃 𝐺 𝑆, 𝑅 	𝑃 𝑆, 𝑅 = 𝑃 𝐺 𝑆, 𝑅 𝑃 𝑆 𝑅 𝑃(𝑅)

𝑃 𝐺 𝑆, 𝑅

𝑃(𝑅)𝑃 𝑆 𝑅

𝑃 𝐺 𝑆, 𝑅

https://commons.wikimedia.org/w/index.php?curid=19734596


BN Example 2
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Modelling the relationship between Sprinkler, Rain and Grass Wet

Source: By AnAj - Public Domain

Let G = "Grass wet", S = "Sprinkler turned on", and R = "Raining" . 
Joint probability is:

𝑃 𝑅, 𝑆, 𝐺 = 𝑃 𝐺 𝑆, 𝑅 	𝑃 𝑆, 𝑅 = 𝑃 𝐺 𝑆, 𝑅 𝑃 𝐺 𝑆, 𝑅 𝑆 𝑅 𝑃(𝑅)

𝑃(𝑅)𝑃 𝑆 𝑅

𝑃 𝐺 𝑆, 𝑅

https://commons.wikimedia.org/w/index.php?curid=19734596


Why Bayesian Networks?

• The model encodes dependencies among all variables
• A BN can be used to learn causal relationships, and 

hence gain understanding about a problem domain and 
to predict the consequences of intervention

• The model has both a causal and probabilistic semantics, 
it is an ideal representation for combining prior 
knowledge (which often comes in causal form) and data 

• Bayesian statistical methods in conjunction with Bayesian 
networks offer an efficient and principled approach for 
reduce the overfitting of data. (As it enforces a 
presumably correct structure.)

• A BN requires typically far fewer parameters and hence 
less storage than a full joint probability distribution

24



(In)Dependencies in BN
• [Direct cause]: A is a direct cause of B

– A and B are dependent
• [Indirect cause]: A direct cause of B, B direct cause of C

– A and C are independent given B

25

𝑃 𝐶 𝐴 =%
!

𝑃 𝐶, 𝐵! 𝐴)

	 =%
!

𝑃 𝐶 𝐵!, 𝐴 	𝑃 𝐵! 𝐴

	 =%
!

𝑃 𝐶 𝐵! 	𝑃 𝐵! 𝐴



(In)Dependencies in BN
• [Common Cause]: A is a common direct cause of B and C

– B and C are dependent (if A is not given)
– B and C are independent given A

• [Common Effect]: C is a common direct effect of A and B
– A and B are independent (if C is not given)
– A and B are dependent given C (“explaining away”)

26



• Your house has an alarm against burglary
– The alarm will usually be set off by burglars 
– Sometimes it may also be set off by earthquakes 
– There are two neighbours, John and Mary
– John and Mary might call you when they hear the alarm
– They might also call you for other issues without alarm

• Variables: 
– Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
– All binary (true or false)

• Relationship between them?
– Cause -> Effect
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Alarm Network
• Domain causal knowledge (causes and effects)

– A burglar can set the alarm off
– An earthquake can set the alarm off 
– The alarm can cause Mary to call 
– The alarm can cause John to call 
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(In)Dependencies in BN

• Recall: given the parents of a node A, the node A is 
independent of its non-descendants
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(In)Dependencies in BN
• Which are true?

– B and E are independent
– B and E are independent given A
– B and M are independent
– B and M are independent given A
– J and M are independent
– J and M are independent given A
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Factorisation
𝑃 𝑀, 𝐽, 𝐴, 𝐸, 𝐵	 = 𝑃 𝑀, 𝐽, 𝐴 	𝐸, 𝐵 𝑃 𝐸, 𝐵

                                 = 𝑃 𝑀, 𝐽, 𝐴	 𝐸, 𝐵)	𝑃 𝐸 𝑃 𝐵
                                 = 𝑃 𝑀, 𝐽 𝐴, 𝐸, 𝐵)𝑃 𝐴|𝐸, 𝐵 𝑃 𝐸 𝑃 𝐵
                                 = 𝑃 𝑀, 𝐽 𝐴 𝑃 𝐴|𝐸, 𝐵 𝑃 𝐸 𝑃 𝐵
                                 = 𝑃 𝑀 𝐴 𝑃(𝐽 𝐴 𝑃 𝐴|𝐸, 𝐵 𝑃 𝐸 𝑃 𝐵
• Each conditional probability is a node.
• Table with 32 entries becomes tables with 2+2+4+1+1=10 entries
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Alarm Network

32

Burglary EarthQK

Alarm

JohnCall MaryCall

B P(B)

T 0.001

E P(E)

T 0.002

B E A P(A|B,E)

T T T 0.95

T F T 0.94

F T T 0.29

F F T 0.001

A J P(J|A)

T T 0.9

F T 0.05

A M P(M|A)

T T 0.7

F T 0.01



Factorisation
• To factorise according to a Bayesian network: sort the 

variables so that the causes are always before the effects, 
e.g., [B, E, A, J, M], then use the rules:
– 𝑃 𝑋2	 𝑋3, ⋯ , 𝑋243) = 𝑃 𝑋2	 parents 𝑋2 , ⋯ , 𝑋5 , ⋯	

	 = 𝑃(𝑋2 	parents 𝑋2
– 𝑃 𝑋2	 𝑋5 = 𝑃(𝑋2) if 𝑋2 and 𝑋5 independent
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Factorisation
• We saw repeated application of the product rule gives
    𝑃 𝑀, 𝐽, 𝐴, 𝐸, 𝐵	 = 𝑃 𝑀 𝐴 𝑃(𝐽 𝐴 𝑃 𝐴|𝐸, 𝐵 𝑃 𝐸 𝑃 𝐵
• The joint probability distribution over all variables in the 

network can be represented as a product of the conditional 
probabilities of each variable given its parents:
𝑃 𝑋!, ⋯ , 𝑋C = 𝑃 𝑋C parents 𝑋C 𝑃 𝑋CD! parents(𝑋CD!))⋯
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Summary

• Conditionally independent given class label (NB)

• Bayes Net = Topology (graph) + Local Conditional Probabilities
• Factorisation

Coming up next…

• More on Bayesian Networks (Build a BN, # free parameters, …)
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