
COMP307/AIML420
INTRODUCTION TO 
ARTIFICIAL INTELLIGENCE

Reasoning under uncertainty: 

Bayesian Networks 2

1



Outline
• Introduction/Review

• Number of Free Parameters

• Building a BN

• Introduction to Inference in a BN

• Summary

2



Introduction/Review
• Naive Bayes (NB) is a simple type of Bayesian network

– Use Bayes' theorem to calculate the probability of a particular 

class given a set of feature

• Bayesian networks (BN) “extends” NB by allowing to 

model dependencies between features through a DAG

– Graphical models that represent probabilistic relationships 

between random variables

– nodes = random variables

– edges = probabilistic dependency between variables
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Introduction/Review
• Factorisation: a joint probability distribution is expressed 

as a product of simpler conditional probability distributions

• The product rule tells us we can always write

         𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐵 𝐴 	𝑃(𝐴)
– No structural constraints imposed

• For the example BN this simplifies to

         𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐷 𝐶 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐵 𝑃𝐴)
– Structural constraints imposed; fewer parameters and more robust

• The joint probability distribution over all variables in the 
network can be represented as a product of the conditional 
probabilities of each variable given its parents.
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Using a Bayesian network: inference

• We are generally interested in a particular probability. 

For example, 𝑃 𝐴 𝐷  in the example network:

– Product rule says: 𝑃 𝐴 𝐷 = ! ",$
!($)

– Here:  𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐷 𝐶 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐵 𝑃𝐴)

– Total probability:  𝑃(𝐴, 𝐷) = ∑',( 𝑃 𝐷 𝐶 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐵 𝑃𝐴) 

– Total probability:  𝑃 𝐷 = ∑"𝑃(𝐴, 𝐷)

• Often faster computational methods exist
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Number of free parameters
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E P(E)
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F F T 0.001

A J P(J|A)

T T 0.9

F T 0.05

A M P(M|A)

T T 0.7

F T 0.01



• Do we need to store P(B = F), P(A = F | B = T, E = T)?
• How many probabilities need to be stored?

Number of free parameters
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• Conditional Prob Table (CPT) size: no of classes minus 1
• Number of free parameters in a model is the number of 

variables/probabilities that cannot be derived, but has to be estimated
– Number of free parameters in the alarm network? 

Number of free parameters
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• Number of free parameters in the alarm network? 
                                                 1+1+4+2+2=10

Number of free parameters
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Number of free parameters
• Calculate the CPT size (number of free parameters) for the following

– Assume: 𝐴 = 2, 𝐵 = 2, 𝐶 = 2, they are all Boolean (binary) variables

• Example: direct cause
– 𝐴 − 1 + 𝐴 × 𝐵 − 1 = 2 − 1 + 2×1 = 3

• Other cases?
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Number of free parameters
• Calculate the CPT size (number of free parameters) for the following

– Assume: 𝐴 = 2, 𝐵 = 2, 𝐶 = 2, they are all Boolean (binary) variables

• Example: direct cause
– 𝐴 − 1 + 𝐴 × 𝐵 − 1 = 2 − 1 + 2×1 = 3

• Other cases?
– Indirect cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐵 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐴 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common effect: 𝐴 − 1 + 𝐵 − 1 + 𝐴 𝐵 𝐶 − 1 = 2 − 1 + 2 − 1 + 2×2×1 = 6

11



Number of free parameters
• Calculate the CPT size (number of free parameters) for the following

– Assume: 𝐴 = 2, 𝐵 = 2, 𝐶 = 2, they are all Boolean (binary) variables

• Example: direct cause
– 𝐴 − 1 + 𝐴 × 𝐵 − 1 = 2 − 1 + 2×1 = 3

• Other cases?
– Indirect cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐵 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐴 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common effect: 𝐴 − 1 + 𝐵 − 1 + 𝐴 𝐵 𝐶 − 1 = 2 − 1 + 2 − 1 + 2×2×1 = 6

12



Number of free parameters
• Calculate the CPT size (number of free parameters) for the following

– Assume: 𝐴 = 2, 𝐵 = 2, 𝐶 = 2, they are all Boolean (binary) variables

• Example: direct cause
– 𝐴 − 1 + 𝐴 × 𝐵 − 1 = 2 − 1 + 2×1 = 3

• Other cases?
– Indirect cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐵 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐴 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common effect: 𝐴 − 1 + 𝐵 − 1 + 𝐴 𝐵 𝐶 − 1 = 2 − 1 + 2 − 1 + 2×2×1 = 6

13



Number of Free Parameters
• Try calculate the CPT size (number of free parameters) for the following

– Assume: 𝐴 = 2, 𝐵 = 2, 𝐶 = 2, they are all Boolean (binary) variables

• Example: direct cause
– 𝐴 − 1 + 𝐴 × 𝐵 − 1 = 2 − 1 + 2×1 = 3

• Other cases?
– Indirect cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐵 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common cause: 𝐴 − 1 + 𝐴 𝐵 − 1 + 𝐴 𝐶 − 1 = 2 − 1 + 2×1 + 2×1 = 5
– Common effect: 𝐴 − 1 + 𝐵 − 1 + 𝐴 𝐵 𝐶 − 1 = 2 − 1 + 2 − 1 + 2×2×1 = 6
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Number of free parameters
• In general, for a Bayesian network with factorization

𝑃 𝑋4, … , 𝑋5 = 𝑃 𝑋4 parents 𝑋4 ∗ ⋯∗ 𝑃 𝑋5 parents 𝑋5

• The number of free parameters of 𝑋6 is

𝑋6 − 1 ∗ 8
7∈9:;<=>?(@!)

𝑌

• A Bayesian network with a small number of free parameters is 
desirable because it 
– Requires less memory
– Is efficient to do reasoning (less variables involved for calculating 

posterior probabilities)

• Ideally, when building a Bayesian network, we should minimise 
the number of parents of each variable
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Building a BN
1. Specify the random variables 
Example: “If it is raining, then students might not attend the lecture”

 Variables Raining and Attend

2. Specify the variables dependencies
Example: 

3. Assign conditional probabilities to each variable given its 
parents in the network
Example: 𝑃(𝑅) 	= 	0.7, 𝑃(𝐴|𝑅) 	= 	0.6

* These conditional probabilities can be obtained from data, expert knowledge, or both
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1. Specify the random variables 
Example: “If it is raining, then students might not attend the lecture”

 Variables Raining and Attend

2. Specify the variables dependencies and build DAG
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Building a BN
1. Specify the random variables 
       Example: “If it is raining, then students might not attend the lecture”

                Variables Raining and Attend

2. Specify the variables dependencies and build DAG
     Example: 

3. Assign conditional probabilities to each variable given its parents 

    Example: 𝑃(𝑅) 	= 	0.7, 𝑃(𝐴|𝑅) 	= 	0.6

    The conditional probabilities can be obtained from data, expert knowledge, or both

* These conditional probabilities can be obtained from data, expert knowledge, or both

A B
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Building the DAG (Step 2)
• Expert Knowledge

– Experts in the domain construct the network by specifying the 
causal relationships among variables

• Constraint-Based Algorithms
– Identify conditional independence constraints with statistical tests, 

and link nodes that are not found to be independent

– E.g., FCI (Fast Causal Inference)

• Score-based Algorithms
– Applications of general optimisation techniques; each candidate 

DAG is assigned a network score maximise as the objective function

– E.g., Tabu search, Simulated Annealing
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Compactness and Node Ordering

• Compactness:
– The more compact the BN model is, the smaller the CPT size

• (CPT = conditional probability table)
– Less computer memory, more computationally efficient
– Over-dense networks fail to represent independencies explicitly
– Over-dense networks fail to represent the causal dependencies in 

the domain

• The compactness depends on getting the node ordering 
“right.” The optimal order is to add the root causes first, then 
the variable(s) they influence directly, and continue until 
leaves are reached
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Inference in a BN
• If there was an earthquake, how likely Mary will call you?
• If both John and Mary called you, how likely there was a burglary?
• If Mary called you, how likely John will call you as well?

• Answering questions like above is inference in a BN
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Recall basic inference

• Consider 𝑃 𝑀, 𝐽, 𝐴, 𝐸, 𝐵	 = 	𝑃 𝑀 𝐴 𝑃(𝐽 𝐴 𝐴|𝐸, 𝐵 𝑃 𝐸 𝑃 𝐵
• Example: probability of burglary if Mary calls

– Use law of total probability (“marginalise out” unknown variables)
– Recall 𝑃 𝐽, 𝐴, 𝐸, 𝐵|𝑀 = 𝑃(𝑀, 𝐽, 𝐴, 𝐸, 𝐵)	/	𝑃(𝑀)
– We compute: 𝑃 𝐵 = 1|	𝑀 = 1 =	∑!,#,$𝑃 𝑀 = 1, 𝐽 = 𝑗, 𝐴 = 𝑎, 𝐸 = 𝑒, 𝐵 = 1 /𝑃(𝑀1)
∑!,#,$ 𝑃 𝑀 = 1 𝐴 = 𝑎 𝑃(𝐽 = 𝑗 𝐴 = 𝑎 𝑃 𝐴 = 𝑎|𝐸 = 𝑒, 𝐵 = 1 𝑃 𝐸 = 𝑒 𝑃 𝐵 = 1 / 𝑃(𝑀 = 1)

• If we only want to know what is more probable, 𝑃(
)

𝐵 = 1|	𝑀 =
1  vs 𝑃 𝐵 = 0|	𝑀 = 1 , then we can omit the denominator:

    𝑃 𝐵|	𝑀 = 1 ∝	∑",$,% 𝑃 𝑀 = 1 𝐴 = 𝑎 𝑃(𝐽 = 𝑗 𝐴 = 𝑎 𝐴 = 𝑎|𝐸 = 𝑒, 𝐵 𝑃 𝐸 = 𝑒 𝑃 𝐵

• Basic inference approach does not exploit network structure
• Very slow for large Bayes networks; faster but approximate, 

methods are useful
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Inference in a BN
• (Probabilistic) inference: computing some useful quantity from the joint 

distribution
– Posterior probability distribution of a variable given observation of a subset of other 

variables (evidence); 𝑃 𝑄 𝐸! = 𝑒!, ⋯ , 𝐸" = 𝑒"
– Most probable explanation of a variable given observation of a subset of other 

variables (evidence); q∗ = 	𝑎𝑟𝑔𝑚𝑎𝑥$ 	𝑃 𝑄 = 𝑞 𝐸! = 𝑒!, ⋯ , 𝐸" = 𝑒"

• Inference in Bayesian networks is very flexible, as evidence can be 
entered for any node while beliefs in any other nodes can be computed
– Causal Reasoning: P(Effect | Cause) 
– Diagnostic Reasoning: P(Cause | Effect) 
– Inter-causal Reasoning: the query nodes are common causes of the evidence nodes.
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Inference in a BN

• The calculation of exact probabilities can be computationally 
expensive or even infeasible for very large networks

• Approximations or sampling methods are attractive but may 
introduce additional uncertainty

• Exact algorithms: “Brute Force approach” (the basic method) or 
“Inference by Enumeration”, “Variable Elimination”, …

• Non-exact algorithms: Belief Propagation, Gibbs Sampling, …

• Discussed in AIML429
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Ordering and Compactness
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• Different algorithms can generate different BNs even if given the 
same variables and CPTs

• Do you think this influences the inferences using such BNs?



Summary

• Number of free parameters gives an estimation of 
complexity

• Building a BN is not trivial for large networks
• We can make inferences to learn about probabilities given 

some evidence

Coming up next…

• Tutorial 
• Next week: Planning and Scheduling (Aaron)
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