
Introduction to Artificial Intelligence

COMP307
Planning and Scheduling 1:

Classic Planning
Aaron Chen

(aaron.chen@ecs.vuw.ac.nz, AM413)

1

mailto:aaron.chen@ecs.vuw.ac.nz

Outline
• Why Planning
• What is Planning
• Planning Domain Definition Language (PDDL)

– State
– Action

• Planning Algorithms as State-Space Search
– Forward Search
– Backward Search

2

Why Planning
• We make plans (mostly unintentionally) everyday

– Change clothes
– Make breakfast
– Go from one place to another
– …

• Robots
– Clean/Housekeeping
– Delivery
– Game playing

• Sounds trivial?
– Computers don’t think so
– World is complex and uncertain

3

Dynamic Analysis and Replanning Tool (1991)
Saved US military millions of dollars

What is Planning
• Find a plan, which is a sequence of actions to achieve the

goal state from the initial state.

• Example: a vacuum cleaner’s world
– Two rooms (Left, Right)
– Initial state: both rooms dirty, I am in room Left
– Actions: {Suck, Move to Left, Move to Right}
– Goal state: both rooms clean

4

State Space in Planning
• The state space is essentially a graph
• Each node stands for a state
• Each link (directed edge) stands for an action

5

Conceptual Model
• State-transition systems (discrete-event systems)
• Σ = 𝑆, 𝐴, 𝐸, 𝛾

– 𝑆 = 𝑠!, 𝑠", … is a finite set of states
– 𝐴 = 𝑎!, 𝑎", … is a finite set of actions
– 𝐸 = 𝑒!, 𝑒", … is a finite set of events
– 𝛾: 𝑆×𝐴×𝐸 → 2|$| is a state-transition function

• Represent as a directed graph
• Actions are transitions that are controlled
• Events are transitions that are contingent

• Planner: given Σ, initial state, objective, provide a plan for controller
• Controller: given a state and plan, provide an action

6

Classical Planning
• Deterministic

– 𝛾: 𝑆×𝐴 → 𝑆: each state and action leads to a single other state
• Static

– Σ = 𝑆, 𝐴, 𝛾 : NO contingency event
• Finite

– There are finite number of states and actions
• Fully observable

– We know everything about Σ
• Restricted goals

– Can be specified as an explicit goal state(s)
• Implicit time

– Actions have no duration, instantaneous state transition

7

Classical Planning
• Problem

– The environment Σ = 𝑆, 𝐴, 𝛾
– The initial state 𝑠!
– The goal state(s) 𝑆"

• Solution (Plan)
– A sequence of actions (𝑎#, 𝑎$, …)
– State transitions (𝑠#, 𝑠$, … 𝑠%), where 𝑠# = 𝛾(𝑠!, 𝑎#), 𝑠$ = 𝛾 𝑠#, 𝑎$, …,

and 𝑠% ∈ 𝑆" is a goal state

• How to represent the states and actions?
• How to perform the search for a solution efficiently

– Which search space, which algorithm, and what heuristics and
control techniques to use for finding a solution.

8

Planning Domain Definition Language
• A classic representation for planning

• A state is represented as a conjunction of fluents that are ground (no
variable) and functionless atoms.
– Lowercase = variable
– Capital letters = value
– Opposite to the style of Probability

• Example
– 𝐴𝑡 𝑥 is invalid: not ground and has variable x
– ¬𝐶𝑙𝑒𝑎𝑛(𝑅𝑖𝑔ℎ𝑡) is invalid: has the negate function
– 𝐴𝑡 𝐹𝑎𝑡ℎ𝑒𝑟 𝐹𝑟𝑒𝑑 , 𝑆𝑦𝑑𝑛𝑒𝑦 is invalid: has the function 𝐹𝑎𝑡ℎ𝑒𝑟 𝐹𝑟𝑒𝑑
– 𝐴𝑡 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝐿𝑒𝑓𝑡) is valid

• Closed world assumption: any fluents that are not mentioned are
false.
– 𝐴𝑡 𝐿𝑒𝑓𝑡 	means Left is not clean, as 𝐶𝑙𝑒𝑎𝑛(𝐿𝑒𝑓𝑡) is not mentioned

9

Planning Domain Definition Language
• An action consists of an action name, all the variables used,

a precondition and an effect.
– Difference from State: there can be variables in actions

• Example: a plane flies from an airport to another airport
– 𝐴𝑐𝑡𝑖𝑜𝑛(𝐹𝑙𝑦 𝑝, 𝑓𝑟𝑜𝑚, 𝑡𝑜 ,
 PRECOND: 𝐴𝑡 𝑝, 𝑓𝑟𝑜𝑚 ∧ 𝑃𝑙𝑎𝑛𝑒 𝑝 ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡 𝑓𝑟𝑜𝑚 ∧ 𝐴𝑖𝑟𝑝𝑜𝑟𝑡(𝑡𝑜)
 EFFECT: ¬𝐴𝑡 𝑝, 𝑓𝑟𝑜𝑚 ∧ 𝐴𝑡(𝑝, 𝑡𝑜))

• Applicability: an action a is applicable in state s, if its
precondition is satisfied by s

• Multiple instantiation: 𝐹𝑙𝑦 𝑁𝑍410, 𝐴𝑢𝑐𝑘𝑙𝑎𝑛𝑑,𝑊𝑒𝑙𝑙𝑖𝑛𝑔𝑡𝑜𝑛
and 𝐹𝑙𝑦 𝑁𝑍87, 𝐴𝑢𝑐𝑘𝑙𝑎𝑛𝑑, 𝐻𝐾

10

PDDL in Vacuum Cleaner’s World
• 𝐼𝑛𝑖𝑡 𝐴𝑡 𝐿𝑒𝑓𝑡
• 𝐺𝑜𝑎𝑙 𝐶𝑙𝑒𝑎𝑛 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝑅𝑖𝑔ℎ𝑡
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑀𝑜𝑣𝑒𝐿𝑒𝑓𝑡 	 ,
 PRECOND:
 EFFECT: 𝐴𝑡 𝐿𝑒𝑓𝑡 ∧ ¬𝐴𝑡(𝑅𝑖𝑔ℎ𝑡))
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑀𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡 	 ,
 PRECOND:
 EFFECT: 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ ¬𝐴𝑡(𝐿𝑒𝑓𝑡))
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑆𝑢𝑐𝑘 𝑥 ,
 PRECOND: 𝐴𝑡 𝑥
 EFFECT: 𝐶𝑙𝑒𝑎𝑛 𝑥)

11

Update State with Action
• Delete list DEL(𝑎): remove the fluents that appear as

negative literals in the action’s effects
• Add list ADD(𝑎): add the fluents that are positive literals in

the action’s effects
• 𝑠! = 𝛾 𝑠, 𝑎 = (𝑠 −DEL(𝑎)) ∪ ADD(𝑎)

• Example in the vacuum cleaner’s world
– 𝑠# = 𝐴𝑡(𝐿𝑒𝑓𝑡), 𝑎# = 𝑀𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡()

• EFFECT(𝑎!)	= 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ ¬	𝐴𝑡(𝐿𝑒𝑓𝑡)
• 𝑠! − DEL(𝑎!) = {	}
• 𝛾 𝑠!, 𝑎! = {	} ∪ ADD 𝑎! = 𝐴𝑡(𝑅𝑖𝑔ℎ𝑡)

– 𝑠$ = 𝐴𝑡(𝑅𝑖𝑔ℎ𝑡), 𝑎$ = 𝑆𝑢𝑐𝑘(𝑅𝑖𝑔ℎ𝑡)
• EFFECT(𝑎")	= 𝐶𝑙𝑒𝑎𝑛 𝑅𝑖𝑔ℎ𝑡
• 𝑠" − DEL(𝑎") = 𝐴𝑡(𝑅𝑖𝑔ℎ𝑡)
• 𝛾 𝑠", 𝑎" = 𝐴𝑡(𝑅𝑖𝑔ℎ𝑡) ∪ ADD 𝑎" = 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝑅𝑖𝑔ℎ𝑡)

12

A Better PDDL
• 𝐼𝑛𝑖𝑡 𝐴𝑡 𝐿𝑒𝑓𝑡
• 𝐺𝑜𝑎𝑙 𝐶𝑙𝑒𝑎𝑛 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝑅𝑖𝑔ℎ𝑡
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑀𝑜𝑣𝑒𝐿𝑒𝑓𝑡 	 ,
 PRECOND: 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡
 EFFECT: 𝐴𝑡 𝐿𝑒𝑓𝑡 ∧ ¬𝐴𝑡(𝑅𝑖𝑔ℎ𝑡))
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑀𝑜𝑣𝑒𝑅𝑖𝑔ℎ𝑡 	 ,
 PRECOND: 𝐴𝑡 𝐿𝑒𝑓𝑡
 EFFECT: 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ ¬𝐴𝑡(𝐿𝑒𝑓𝑡))
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑆𝑢𝑐𝑘 𝑥 ,
 PRECOND: 𝐴𝑡 𝑥 ∧ ¬𝐶𝑙𝑒𝑎𝑛(𝑥)
 EFFECT: 𝐶𝑙𝑒𝑎𝑛 𝑥)

13

Expanding PDDL
• Assuming there are four rooms {Left, Right, Top, Bottom}

– Can move from any room to any room
– Otherwise, we need more information, e.g., 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐿𝑒𝑓𝑡, 𝑇𝑜𝑝 , …

• 𝐼𝑛𝑖𝑡 𝐴𝑡 𝑇𝑜𝑝 , 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝐿𝑒𝑓𝑡, 𝑇𝑜𝑝 , …
• 𝐺𝑜𝑎𝑙(

)
𝐶𝑙𝑒𝑎𝑛 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝑇𝑜𝑝 ∧

𝐶𝑙𝑒𝑎𝑛(𝐵𝑜𝑡𝑡𝑜𝑚)
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑀𝑜𝑣𝑒 𝑥, 𝑦 ,
 PRECOND: 𝐴𝑡 𝑥 ∧ ¬𝐴𝑡 𝑦 ∧ 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡(𝑥, 𝑦)
 EFFECT: 𝐴𝑡 𝑦 ∧ ¬𝐴𝑡(𝑥))
• 𝐴𝑐𝑡𝑖𝑜𝑛(𝑆𝑢𝑐𝑘 𝑥 ,
 PRECOND: 𝐴𝑡 𝑥 ∧ ¬𝐶𝑙𝑒𝑎𝑛(𝑥)
 EFFECT: 𝐶𝑙𝑒𝑎𝑛 𝑥)

14

Planning Algorithms as State-Space Search
• Forward (progression) state-space search

– Start with the initial state
– Examine all the applicable actions for the current state
– Avoid loop – never go back to previous states
– Until reach a goal state

• There can be multiple different goal states
– All the goal state fluents are present
– Other fluents can be present as well
– E.g.,

• Both rooms are clean, the cleaner can be in either room
• 𝐶𝑙𝑒𝑎𝑛 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐴𝑡(𝐿𝑒𝑓𝑡)
• 𝐶𝑙𝑒𝑎𝑛 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐴𝑡(𝑅𝑖𝑔ℎ𝑡)

15

Planning Algorithms as State-Space Search

16

Planning Algorithms as State-Space Search
• A plan is a path from the root node to a non-loop leaf node

• Initial state: 𝐴𝑡 𝐿𝑒𝑓𝑡
• Action 1: 𝑆𝑢𝑐𝑘 𝐿𝑒𝑓𝑡
• State 1: 𝐴𝑡 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝐿𝑒𝑓𝑡)
• Action 2: 𝑀𝑜𝑣𝑒 𝑅𝑖𝑔ℎ𝑡
• State 2: 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝐿𝑒𝑓𝑡)
• Action 3: 𝑆𝑢𝑐𝑘 𝑅𝑖𝑔ℎ𝑡
• State 3 (Goal): 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝑅𝑖𝑔ℎ𝑡)

17

Planning Algorithms as State-Space Search
• Backward (regression) relevant state-space search

– Start with a goal state (random if there are more than one)
– Examine all the relevant actions

• Could be the last step leading to the current state
– At least one effect (positive fluent) is an element of the current state
– Has no effect that negates an element of the current state

– Avoid loop
– Until reach the initial state

18

𝑠! = 𝛾?@ 𝑠, 𝑎 = 𝑠 − 𝑒𝑓𝑓𝑒𝑐𝑡𝑠A 𝑎 + 𝑝𝑟𝑒𝑐𝑜𝑛𝑑(𝑎)

Planning Algorithms as State-Space Search

19

Planning Algorithms as State-Space Search
• A plan is a path from a non-loop leaf node to the root node

• Initial state: 𝐴𝑡 𝐿𝑒𝑓𝑡
• Action 1: 𝑆𝑢𝑐𝑘 𝐿𝑒𝑓𝑡
• State 1: 𝐴𝑡 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝐿𝑒𝑓𝑡)
• Action 2: 𝑀𝑜𝑣𝑒 𝑅𝑖𝑔ℎ𝑡
• State 2: 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝐿𝑒𝑓𝑡)
• Action 3: 𝑆𝑢𝑐𝑘 𝑅𝑖𝑔ℎ𝑡
• State 3 (Goal): 𝐴𝑡 𝑅𝑖𝑔ℎ𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛 𝐿𝑒𝑓𝑡 ∧ 𝐶𝑙𝑒𝑎𝑛(𝑅𝑖𝑔ℎ𝑡)

20

Summary
• What is planning? – Find a sequence of actions to achieve

the goal state from the initial state
• Planning Domain Definition Language (PDDL) – a standard

language to represent planning problems
• Planning algorithms as state-space search

– Forward search
– Backward search

• Suggested reading: Textbook, chapter 10: Classical
Planning

21

