Introduction to Artificial Intelligence

VICTORIA UNIVERSITY OF

yosd WELLINGTON

N\~ TE HERENGA WAKA

COMP307
Planning and Scheduling 1:
Classic Planning

Aaron Chen
(aaron.chen@ecs.vuw.ac.nz, AM413)

mailto:aaron.chen@ecs.vuw.ac.nz

Outline

Why Planning
What is Planning

Planning Domain Definition Language (PDDL)
— State
— Action

Planning Algorithms as State-Space Search
— Forward Search
— Backward Search

Why Planning

We make plans (mostly unintentionally) everyday

— Change clothes
— Make breakfast
— Go from one place to another

Robots
— Clean/Housekeeping

— Delivery
— Game playing

Sounds trivial?
— Computers don’t think so
— World is complex and uncertain

Dynamic Analysis and Replanning Tool (1991)
Saved US military millions of dollars

What is Planning

Find a plan, which is a sequence of actions to achieve the
goal state from the initial state.

Example: a vacuum cleaner’s world

— Two rooms (Left, Right)

— Initial state: both rooms dirty, | am in room Left
— Actions: {Suck, Move to Left, Move to Right}
— Goal state: both rooms clean

State Space in Planning

* The state space is essentially a graph
« Each node stands for a state
« Each link (directed edge) stands for an action

-;_’

Conceptual Model

State-transition systems (discrete-event systems)

X=(S,AE,y)
— S ={s4,5,, ..} is afinite set of states T lDescr'pt'O” ofx
A = : i : >| Planner
A ={aq,a,, ...}.IS a f.mllte set of actions Objectives =
— E = {eq, ey, ...} is afinite set of events s
Y
— y:SxAXE — 215! is a state-transition function Controller
T A
Represent as a directed graph Observations Actions
Actions are transitions that are controlled !
- _ System X
Events are transitions that are contingent TEvemS

Planner: given Z, initial state, objective, provide a plan for controller
Controller: given a state and plan, provide an action

Classical Planning

Deterministic
— y:5%XA — S: each state and action leads to a single other state

Static
— X =(5,4,y): NO contingency event
Finite
— There are finite number of states and actions

Fully observable
— We know everything about X

Restricted goals

— Can be specified as an explicit goal state(s)

Implicit time

— Actions have no duration, instantaneous state transition

Classical Planning

Problem

— The environment £ = (S, 4,y)
— The initial state s,

— The goal state(s) S,

Solution (Plan)
— A sequence of actions (a4, a,, ...)

— State transitions (sq, S5, ... s;), Where s; = y(sy,a4), s, = y(s1,a,), ...,
and s, € S, is a goal state

How to represent the states and actions?

How to perform the search for a solution efficiently

— Which search space, which algorithm, and what heuristics and
control techniques to use for finding a solution.

Planning Domain Definition Language

A classic representation for planning

A state is represented as a conjunction of fluents that are ground (no
variable) and functionless atoms.

— Lowercase = variable

— Capital letters = value
— Opposite to the style of Probability

Example
— At(x) is invalid: not ground and has variable x
— =Clean(Right) is invalid: has the negate function
— At(Father(Fred), Sydney) is invalid: has the function Father(Fred)
— At(Left) A Clean(Left) is valid

Closed world assumption: any fluents that are not mentioned are
false.

— At(Left) means Left is not clean, as Clean(Left) is not mentioned

Planning Domain Definition Language

 An action consists of an action name, all the variables used,
a precondition and an effect.

— Difference from State: there can be variables in actions

« Example: a plane flies from an airport to another airport
— Action(Fly(p, from, to),

PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
EFFECT: =At(p, from) A At(p, to))

« Applicability: an action a is applicable in state s, if its
precondition is satisfied by s

* Multiple instantiation: Fly(NZ410, Auckland, Wellington)
and Fly(NZ87, Auckland, HK)

PDDL in Vacuum Cleaner’s World

Init(At(Left))
Goal(Clean(Left) A Clean(Right))
Action(MoveLeft(),
PRECOND:
EFFECT: At(Left) A =At(Right))
Action(MoveRight(),
PRECOND:
EFFECT: At(Right) A =At(Left))
Action(Suck(x),
PRECOND: At (x) (LT T2 T80
EFFECT: Clean(x)) /\/,S/ E S\/\\
(T PT =0 = PT T=
\ 4 _“"5 3 ‘.’i"ig_\: /\ : "‘;"“ 3 %}\5—5 N
L | =4 T \‘& v
’ D kjl ’

Update State with Action

* Delete list DEL(a): remove the fluents that appear as
negative literals in the action’s effects

« Add list ADD(a): add the fluents that are positive literals in
the action’s effects

¢« s'=vy(s,a) = (s —DEL(a)) U ADD(a)

Example in the vacuum cleaner’s world

— s; = At(Left), a; = MoveRight()

» EFFECT(a;) = At(Rignt) A = At(Left)

* 51 — DEL(a;) = {}

* y(s1,a1) = {} UADD(a,;) = At(Right)
— s, = At(Right), a, = Suck(Right)

* EFFECT(a,) = Clean(Right)

* s, — DEL(a,) = At(Right)

* y(sy,a,) = At(Right) U ADD(a,) = At(Right) A Clean(Right)

12

Init(At(Left))

A Better PDDL

Goal(Clean(Left) A Clean(Right))

Action(MoveLeft(),
PRECOND: At(Right)

EFFECT: At(Left) A =At(Right))

Action(MoveRight(),
PRECOND: At(Left)

EFFECT: At(Right) A =At(Left))

Action(Suck(x),

PRECOND: At(x) A =Clean(x)

EFFECT: Clean(x))

/, » 3] @N
L)S:Iggg 2% L 28 i;&fm \/X
/_/'/ ’:S// \\S\\\“\\.
- T
- 5 /N >
] = % X I
(se) T = 50
X ' -t ‘ X
; — R —
X]~

‘\X/‘

13

Expanding PDDL

Assuming there are four rooms {Left, Right, Top, Bottom}
— Can move from any room to any room
— Otherwise, we need more information, e.g., Adjacent(Left, Top), ...

Init(At(Top), Adjacent(Left,Top), ...)

Goal(Clean(Left) A Clean(Right) A Clean(Top) A
Clean(Bottom))

Action(Move(x,y),
PRECOND: At(x) A =At(y) A Adjacent(x,y)
EFFECT: At(y) A =At(x))
Action(Suck(x),
PRECOND: At(x) A =Clean(x)
EFFECT: Clean(x))

Planning Algorithms as State-Space Search

« Forward (progression) state-space search
— Start with the initial state
— Examine all the applicable actions for the current state

— Avoid loop — never go back to previous states
— Until reach a goal state

« There can be multiple different goal states
— All the goal state fluents are present
— Other fluents can be present as well
- E.g,,
« Both rooms are clean, the cleaner can be in either room
* Clean(Left) A Clean(Right) A At(Left)
* Clean(Left) A Clean(Right) A At(Right)

15

Planning Algorithms as State-Space Search

Cf;ﬁ‘
Suck(Left)
=4 .| =4
| 3R 03R
SUCk(nght) Move(Left) \
= Move(Right
=" (Right)
2R | %2R
Move(Right)
Move(Left)
/—4;] ‘J‘.‘)
I ™ | o -
Suck(l_ef\t)A : /Mo;e(Left)
%& . L .du
2R 2R _
Move(Right) Suck(Right)

=

16

Planning Algorithms as State-Space Search

A plan is a path from the root node to a non-loop leaf node

Initial state: At(Lef't)

Action 1: Suck(Lef't)

State 1: At(Left) A Clean(Left)

Action 2: Move(Right)

State 2: At(Right) A Clean(Lef't)

Action 3: Suck(Right)

State 3 (Goal): At(Right) A Clean(Left) A Clean(Right)

Planning Algorithms as State-Space Search

« Backward (regression) relevant state-space search

— Start with a goal state (random if there are more than one)

— Examine all the relevant actions

« Could be the last step leading to the current state
— At least one effect (positive fluent) is an element of the current state
— Has no effect that negates an element of the current state

— Avoid loop
— Until reach the initial state

s’ =y71(s,a) = (s — effects*(a)) + precond(a)

Planning Algorithms as State-Space Search

= I =)
ol il R
Move(Right) SUCk(Rm Move(Left)
_d;; > dr;'
R 2258
Move(RW
_ Suck(Left)
-] ‘ Move(Left)
Move(Rm /
/—/‘Q dﬁ?l
I
Suck(Right)
Suck(Left) _ -
= - T‘:{u
2R =R
Move(% Move(Righ
ght)

19

Planning Algorithms as State-Space Search

A plan is a path from a non-loop leaf node to the root node

Initial state: At(Lef't)

Action 1: Suck(Lef't)

State 1: At(Left) A Clean(Left)

Action 2: Move(Right)

State 2: At(Right) A Clean(Lef't)

Action 3: Suck(Right)

State 3 (Goal): At(Right) A Clean(Left) A Clean(Right)

Summary

What is planning? — Find a sequence of actions to achieve
the goal state from the initial state

Planning Domain Definition Language (PDDL) — a standard
anguage to represent planning problems

Planning algorithms as state-space search
— Forward search
— Backward search

Suggested reading: Textbook, chapter 10: Classical
Planning

21

