
Introduction to Artificial Intelligence

COMP307 Planning and Scheduling 4:
Routing

1

Outline
• Why Routing?
• Vehicle Routing Problem
• Problem and Solution Representation
• Some Heuristics

2

Why Routing?
• A lot of online shopping
• Delivery/Logistics

3

Why Routing
• Delivery

– Online shopping
– Food & Milk
– Newspapers & Post
– …

• Logistics & Transportation
– Waste Collection
– …

• Dynamic Analysis and Replanning Tool by US forces in
1990s.
– 50,000 vehicles, cargo, people...
– This single application more than paid back DARPA’s 30-year

investment in AI.
• Wellington Free Ambulance

4

Vehicle Routing
• A company delivering products to customers with its

vehicles
– All the products and vehicles are located at a depot
– Each customer has a location and a demand (the amount of products

requested)
– The vehicles have limited capacity
– Objective: Find the shortest routes to serve the costumers

5

Vehicle Routing
• Problem:

– A graph with the node set and the edge set
– A special depot node
– Each edge has a cost (length, travel time, …)
– Each node except depot has a demand (customer demand)
– Vehicles with limited capacity

• Find a solution:
– A set of routes, each for a vehicle
– Each node is visited exactly once
– Each route starts and ends at the depot (cycle)
– The total demand of the nodes in each route does not exceed

capacity
• Objective: minimize the total cost of the routes

6

Vehicle Routing: An Example

7

Problem/Graph Solution

Vehicle Routing: An Example

• Which one is better/shorter?
8

Solution 1 Solution 2

Vehicle Routing is Hard
• Too many solutions

– 10 nodes (excluding depot), 1 vehicle (TSP)
– 3.6 million solutions

• NP-hard
– Cannot guarantee to find the optimal solution in reasonable time

• How to Solve Vehicle Routing
– Heuristics: Search for a reasonably good solution in a given (short)

time
– This lecture:

• Nearest Neighbor heuristic
• Savings heuristic

9

A Typical Problem Description

• Depot has index of 1 (or 0), and demand of 0
• Unique edge between each pair of nodes

– Edge length = Euclidean distance

10

Node X-coord Y-coord Demand

1 (depot) 82 76 0

2 96 44 19

3 59 5 21

4 49 8 6

… … … …

𝐿 𝑖, 𝑗 = 𝑥! − 𝑥"
#
+ 𝑦! − 𝑦"

#

• A set of routes, each route is a sequence of nodes
– Start and end at the depot
– (1, 3, 5, 2, 1) …

Solution Representation

11

𝐶𝑜𝑠𝑡 𝑅$ = 𝐿 1,5 + 𝐿 5,2 + 𝐿 2,3 + 𝐿 3,1

𝐶𝑜𝑠𝑡 𝑅# = 𝐿 1,4 + 𝐿 4,7 + 𝐿 7,6 + 𝐿(6,1)

𝐶𝑜𝑠𝑡 𝑆 = 𝐶𝑜𝑠𝑡 𝑅$ + 𝐶𝑜𝑠𝑡(𝑅#)

1. Initialize a solution: a route starting from the depot
2. Append the nearest feasible node to the end of the current

route
– Unvisited
– After inserting the node, the total demand of the route does not

exceed the capacity
3. If no feasible node is found for the current route, then close

the current route (return to the depot) and create a new
route starting from the depot

4. Repeat 2. and 3. until all nodes are visited

Nearest Neighbor Heuristic

12

Nearest Neighbour Heuristic

13

Capacity = 3

Nearest Neighbour Heuristic

14

Capacity = 3

Nearest Neighbour Heuristic

15

Capacity = 3

Nearest Neighbour Heuristic

16

Capacity = 3

Nearest Neighbour Heuristic

17

Capacity = 3

Nearest Neighbour Heuristic

18

Capacity = 3

Nearest Neighbour Heuristic

19

Capacity = 3

Nearest Neighbour Heuristic

20

Capacity = 3

Nearest Neighbour Heuristic

21

Capacity = 3

Nearest Neighbour Heuristic

22

Capacity = 3

Nearest Neighbour Heuristic

23

Capacity = 3

Nearest Neighbour Heuristic

24

Capacity = 3

Savings Heuristic
• Start with smallest cycles (depot -> node -> depot), and

keep merging routes with the largest saving in cost

• Merge two routes
𝑠𝑎𝑣𝑖𝑛𝑔 = 𝐿 𝑣!, 1 + 𝐿 1, 𝑣" − 𝐿(𝑣!, 𝑣")

25

Savings Heuristic
1. Initialize routes (1, 𝑣# , 1) for each node 𝑣# except the depot
2. Compute and store the savings for each possible merge

𝑠𝑎𝑣𝑖𝑛𝑔 𝑣# , 𝑣$ = 𝐿 𝑣# , 1 + 𝐿 1, 𝑣$ − 𝐿(𝑣# , 𝑣$)
3. Check all the possible/feasible route merges

– Merge 𝑟𝑜𝑢𝑡𝑒! and 𝑟𝑜𝑢𝑡𝑒": merge the last non-depot node of 𝑟𝑜𝑢𝑡𝑒!
and the first non-depot node of 𝑟𝑜𝑢𝑡𝑒"

4. Select the merge with the largest saving and merge the
routes

5. Repeat 3 and 4 until no more merge can be done

26

(1, 3, 5, 2, 1) (1, 4, 7, 6, 1)

(1, 3, 5, 2, 4, 7, 6, 1)

Savings Heuristic

27

Savings Heuristic

28

Savings Heuristic

29

Savings Heuristic

30

Savings Heuristic

31

Savings Heuristic

32

Savings Heuristic

33

Savings Heuristic

34

Compare Solutions

• Further improvement: simulated annealing, tabu search, genetic
algorithms, …

• GP to learn heuristics
• Reinforcement learning

35

Nearest Neighbor Savings Optimum

Other Routing Problems
• Arc Routing: serving edges rather than nodes

36

Other Routing Problems
• Pickup and Delivery: pickup nodes and delivery nodes

37

