Introduction to Artificial Intelligence

VICTORIA UNIVERSITY OF

WELLINGTON

1897

N\~ TE HERENGA WAKA

COMP307
Planning and Scheduling 3:
Dynamlc Schedullng




Outline

* Dynamic Scheduling

« Dispatching Rules
— Generating schedules by rules
* Designing Dispatching Rules
— Terminal set

— Function set
— Fitness function




Dynamic Scheduling
n static scheduling, it is assumed that all the information is
Known in advance and do not change over time

n real life, usually not the case (dynamic environment)
— The plan today won’t work tomorrow




Dynamic Scheduling

Manufacture two cars

— 2 jobs known in advance

— Already made a plan: makespan = 115
— A new job arrives at time 10

N2

— Job({AddEngine3 < AddWheels3 < Inspect3})

— Operation(AddEngine3, ProcTime: 20, Use: EngineHoist)
— Operation(AddWheels3, ProcTime: 30, Use: WheelStation)
— Operation(Inspect3, ProcTime: 10, Use: Inspector)

. . i
EngineHoist ‘ A.ddEngine1 ‘ AddEngine2 ’
WheelStation [ AddWheels1 AddWheels?2

20 30 40 50 60 70 80 90 100 110 12IO

(@)
—i
——ﬁ-——————



Dynamic Rescheduling

« Simply append to the end of the current schedule
— Makespan = 150

EngineHoist ‘ AddEngine1 ’ AddEngine2 ’ AddEngine3 ’

WheelStation ‘ AddWheels1 — AddWheels2 - AddWheels3 ’

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

* Re-optimise the unexecuted schedule 10 jobs, 5 machines,
— Makespan = 135, but can be SLOW 6.3%107" solutions

EngineHoist AddEngine ‘ AddEngine3 ‘ AddEngine2 ’

WheelStation ‘ AddWheels1 { AddWheels3 AddWheels?2

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150



Dispatching Rule

Forward search: expand all branches, time consuming

EH:( 1] 2 ]1 Process(AW2, WS, 90) EH:(__ 1 | 2 )
WS: WS: -—->
Ins:
Process(AE2, EH, 30)
EH: )
WS: e
Ins:
XC,CQSS(AWL WS, 30)
Process(AE1, EH, 0) EH: N
WS: s
Ins: Process(Ins1, Ins, 60) |Ins:
. _/ . _/
2 ) f 2
EH: Process(Ins2, Ins, 75) | EH:
Process(AE2, EH, 0) ws: > WS: REE
Ins: Proc Ins:
J GSSM £ N N\ Y
A
%ssmwz, Ws, 60) 9
( 2 1)
EH:
P L
{WS: >
Process(AE1, EH, 60)
2 1)
: 2 1 .
EVI;.[ I —» WS: (1 ==
Ins: JProcess(AWL ws, 90) |Ins:




Dispatching Rule

 Intelligently select one branch at each point?

( N\
EH:(1 ] 2 ]1 Process(AW2, WS, 90) EH:(_ 1 ] 2 )
WS: > WS: -
Ins: Pro Ins:
CeSSMW7 W \ J
Process(AE2, EH, 30) S 30)
EH: (1 ) EH: (1 ] 2 )
WS: WS: -
Ins: u 30) Ins:
g2, BN
Process(AW1, WS, 30) Process(A
G e N
Process(AE1, EH, 0) EH: EH:
ws: > WS: >
Ins: Process(Ins1, Ins, 60) |Ins: )
.
R N\
EH C_ 2 ) Process(Ins2, Ins, 75) EH 2 )
Process(AE2, EH, 0) Ws: =) > WS: ) T
Ins: p’OCe Ins:
J Ssm 571 EH . J
Process(AW2, WS, 60) 89 ;
(2 ) (2 ] 1)
wS: -
WS:
. Ins:
Ins: \

Process(AE1, EH, 60)

EH: ( 2 1)
: 2 1
5\;;[ I —p»| WS: [ 1 ——
Ins: JProcess(AWL Ws, 90) |Ins:




Dispatching Rule

» Dispatching Rule: a rule to select one action in each state

— Considering ONLY the earliest applicable actions (non-delay)

— Assigning a priority to each earliest action by a priority function
« Selecting the action with the highest priority

* An example: Shortest Processing Time (SPT)
— Always select the shortest processing time
— Periority of Process(o, m, t) is -ProcTime(0)




Dispatching Rule

« Which one is selected?

actonproriyy___

Process(AddEngine2, EngineHoist, 30) -60

Process(Inspectl, Inspector, 60) -10

« Which one is selected?

N

Process(AddEnginel, EngineHoist, 0) -30
Process(AddEngine2, EngineHoist, 0) -60



Generate a Schedule by Dispatching Rule

« Step 1: Initialize state

— empty schedule, all operations unprocessed, time = 0, machine idle
time = O, first operation ready time = arrival time, other operation

ready time = o«
« Step 2: Find the earliest applicable actions;
« Step 3: Select the next action by the dispatching rule

« Step 4: Add the selected action into the schedule, update
the state

« Step 5: If all operations are processed, stop. Otherwise, go
to step 2.




Generate Schedule by SPT

AddEngine AddWheels Inspect

EngineHoist : ------------------------------------------------------
: ‘ AddEngine

WheelStation :
: l AddEngine2

Inspector L TTTTTTITITITooeoooooeooooooooooooooooooooooos

O 10 20 30 40 50 60 70 8 90 100 110 120 130 140

11



Generate Schedule by SPT

AddEngine AddWheels Inspect

Job 1 0 30 30 10
Job 2 0 60 15 10
Job 3 10 20 30 10
EngineHoist AddEngine1
e ————
WheelStation i [ AddEngine2 }
Inspector i E ‘ AddWheels1 ’
| .

12



Generate Schedule by SPT

AddEngine AddWheels Inspect

Job 1 0 30 30 10
Job 2 0 60 15 10
Job 3 10 20 30 10
EngineHoist AddEngine J AddEngine3 J (7T T T T \
: ‘ AddEngine2
WheelStation | AddWheelst } o
Inspector

13



Generate Schedule by SPT

AddEngine AddWheels Inspect

Job 1 0) 30 30 10

Job 2 0) 60 15 10

Job 3 10 20 30 10
EngineHoist AddEngine1 ‘ AddEngine3 ‘ AddEngine2

WheelStation ‘ AddWheels1 } AddWheels3 AddWheels?2

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140



Advantages of Dispatching Rule

« Can be apply at ANY time point to change the remaining
schedule
— Initial state = current state

— But only need at critical time point (a machine becomes idle, an
operation becomes ready)

« Select ONLY the next action to be taken, NO need to
generate the entire remaining schedule
* Very quick in real time, can handle dynamic environment

very well
— At each time point, complexity = #unprocessed ops * O(priority)




Design of Dispatching Rule

* Intuition
— First-Come-First-Serve (Minimum Waiting Time)
— Shortest Processing Time
— Earliest Due Date
— Maximum Work Remaining

* Look-Ahead
— Work waiting on the next machine
— Processing time of the next operation

« Composite rules

— -(PT+WINQ)
— -(2PT+WINQ+NPT)




Design of Dispatching Rule

Different scenarios need different rules
— Ford car manufacturing factory in summer season
— Samsung mobile production lines in spring season

Hard to design effective rule for any particular scheduling
scenario

Use Genetic Programming (GP) to learn/train dispatching
rule based on historical data/simulation




Learning Dispatching Rule with GP

« Goal: find the best priority function (GP trees)

’ SPT rule
n [ProcTime]

2PT+WINQ+NPT

[NPT]

18




Learning Dispatching Rule with GP

 Terminal set: features/attributes of the state and the
considered Process(o, m, t)
— Processing time of o
— Processing time of 0’s next operation

— Total processing time of all the subsequent operations after o (work
remaining)

— Constant coefficients

 Function set
- {+5 Ty X, /}

— {max, min}

* Fitness: average makespan (or any other objective) of the
generated schedules for a set of training instances

19



Summary

Simple (re-)search cannot handle dynamic scheduling
Dispatching rule

Generate a schedule by a dispatching rule

Learning dispatching rules by GP




