COMP307/AIML420 INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Tutorial on probability

Independence of Events

- Let A and B be events
- For independence any of the following is sufficient:
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$
- $P(A, B)=P(A) P(B)$
- Show that $P(B \mid A)=P(B)$ if $P(A \mid B)=P(A)$ is true:
$-P(B \mid A)=P(A \mid B) \frac{P(B)}{P(A)}=P(A) \frac{P(B)}{P(A)}=P(B)$
- Show that $P(B \mid A)=P(B)$ if $P(A, B)=P(A) P(B)$ is true:
$-P(B \mid A)=\frac{P(A, B)}{P(A)}=\frac{P(A) P(B)}{P(A)}=P(B)$

Independence Example 1

X	Y	$P(X, Y)$
0	0	0.1
0	1	0.2
1	0	0.3
1	1	0.4

- X and Y are random variables
- Are events $X=0$ and $Y=1$ independent?

Independence Example 1

\boldsymbol{X}	\boldsymbol{Y}	$P(\boldsymbol{X}, \boldsymbol{Y})$
0	0	0.1
0	1	0.2
1	0	0.3
1	1	0.4

- X and Y are random variables
- Are events $X=0$ and $Y=1$ independent?
- $P(X=0)=\sum_{y} P(X=0, Y=y)=0.3 \quad$ (sum rule)
- $P(X=0 \mid Y=1)=P(X=0, Y=1) / P(Y=1)=0.2 / 0.6=1 / 3$ (product rule)
- No, not independent (but not so far off).

Independence Example 2

\boldsymbol{X}	\boldsymbol{Y}	$P(\boldsymbol{X}, \boldsymbol{Y})$
0	0	0.1
0	1	0.1
1	0	0.4
1	1	0.4

- X and Y are random variables
- Are events $X=0$ and $Y=1$ independent?
- $P(X=0)=\sum_{y} P(X=0, Y=y)=0.2 \quad$ (sum rule)
- $P(X=0 \mid Y=1)=P(X=0, Y=1) / P(Y=1)=0.1 / 0.5=0.2$
(product rule)
- Yes, independent

Independence Example 2

X	Y	$P(X, Y)$
0	0	0.1
0	1	0.1
1	0	0.4
1	1	0.4

- X and Y are random variables
- Are events $X=1$ and $Y=0$ independent?
- $P(X=1)=0.8$
- $P(X=1 \mid Y=0)=P(X=1, Y=0) / P(Y=0)=0.4 / 0.5=0.8$
- Yes, independent

Independence of Random Variables

- (Not discussed in class, but useful)
- The independence of random variables requires that $P(X=x, Y=y)=p(X=x) P(Y=y)$ for all possible combinations of x and y
- Very commonly used
- In example 2 the random variables are independent:

\boldsymbol{X}	Y	$P(X, Y)$
0	0	0.1
0	1	0.1
1	0	0.4
1	1	0.4

\boldsymbol{X}	$P(X)$
0	0.2
1	0.8
\boldsymbol{Y}	$P(Y)$
0	0.5
1	0.5

Independence Example 3

\boldsymbol{X}	\boldsymbol{Y}	$P(\boldsymbol{X}, \boldsymbol{Y})$
0	0	0.05
0	1	0.05
1	0	0.15
1	1	0.25
2	0	0.2
2	1	0.3

- X and Y are random variables
- $P(X=1)=0.4$
- $P(X=1 \mid Y=0)=P(X=1, Y=0) / P(Y=0)=0.15 / 0.4=3 / 8$
- Events $P(X=1)$ and $P(Y=0)$ are not independent
- $P(X=2)=0.5$
- $P(X=2 \mid Y=0)=P(X=2, Y=0) / P(Y=0)=0.2 / 0.4=0.5$
- Events $P(X=2)$ and $P(Y=0)$ are independent
- Random variables X and Y are not independent

Three Events

- Let A, B and C be events
- Note that \{event A happens or event B happens is just another event (we can call it event D)
- Hence the rules for two variables carry over
- Conditional independence is particularly relevant:
- Let A and B be conditionally independent given C :
- $P(A, B \mid C)=P(A \mid C) P(B \mid C)$
- $P(A, B, C)=P(A, B \mid C) P(C)=P(A \mid C) P(B \mid C) P(C)$
- Does not imply $P(A, B)=P(A) P(B)$

Conditional Independence Example

X	Y	Z	$P(X, Y, Z)$
0	0	0	0.05
0	0	1	0.05
0	1	0	0.2
0	1	1	0.2
1	0	0	0.1
1	0	1	0.1
1	1	0	0.2
1	1	1	0.1

Y	$P(Y \mid X=0)$
0	0.2
1	0.8

Z	$P(Z \mid X=0)$
0	0.5
1	0.5

\boldsymbol{X}	$P(\boldsymbol{X})$
0	0.5
1	0.5

- For the example (for any y and z)

$$
P(Y=y, Z=z \mid X=0)=P(Y=y \mid X=0) P(Z=z \mid X=0)
$$

- Events Y and Z independent conditional on event $X=0$ happening
- But not independent conditional on event $X=1$:

$$
\begin{aligned}
& -\quad P(Y, Z \mid X=1) \neq P(Y \mid X=1) P(Z \mid X=1) \\
& \quad P(Y=1 / X=1)=P(Y=1, X=1) / P(X=1)=0.3 / 0.5=0.6 \\
& \quad P(Y=1 \mid Z=0, X=1)=P(Y=1, Z=0 / X=1) / P(Z=0 \mid X=1)= \\
& \quad(P(Y=1, Z=0, X=1) / P(X=1)) / P(Z=0, X=1) / P(X=1))= \\
& (P(Y=1, Z=0, X=1) / P(Z=0, X=1)=0.2 / 0.3=2 / 3 \\
& -\quad P(Y, Z) \neq P(Y) P(Z)
\end{aligned}
$$

Slides with examples of probability theory

- Many courses use the same examples
- Some useful introductory-level slides are
- University of Chicago
- Good introduction and nice examples
- We discuss some examples; slides 17-23, 24-27, 30-37
- Stony Brook
- Nice basic material and good random variable examples
- We briefly go through all slides, emphasing random variables
- Stanford
- Nice motivation; looks a bit more intimidating.
- Illinois
- Different examples
- Links to decision theory, utility theory
- Trinity College
- A nice example of conditional independence, such independence is relevant for Bayesian networks later on

