Introduction to Artificial Intelligence

VICTORIA UNIVERSITY OF

yosd WELLINGTON

N\~ TE HERENGA WAKA

COMP307
Planning and Scheduling:
Tutorial 1

Question

 Which of states below are valid states?

— Painted(LeftWall)

— At(x)

— —Clean(Cotton)

— Rainy(Tomorrow) or Cloudy(Tomorrow)
— Passed(DueDate(307A3))

— Hold(Banana) and At(Room(C)

PDDL in Vacuum Cleaner’s World

Update State with Action

Delete list DEL(a): remove the fluents that appear as
negative literals in the action’s effects

Add list ADD(a): add the fluents that are positive literals in
the action’s effects

s’ = RESULT(s,a) = (s —DEL(a)) U ADD(a)

Example in the vacuum cleaner’s world

— s, = At(Left), a, = MoveRight()
 EFFECT(a,) = At(Right) A = At(Left)
d Sl — DEL(al) - ¢
 RESULT(sy,a,) = @ U ADD(a,) = At(Right)

— s, = At(Right), a; = Suck(Right)
 EFFECT(a,) = Clean(Right)
* s, — DEL(a,) = At(Right)
* RESULT(s,,a,) = At(Right) U ADD(a,) = At(Right) A Clean(Right)

Planning Algorithms as State-Space Search

« Forward (progression) state-space search
— Start with the initial state
— Examine all the applicable actions for the current state
— Avoid loop — never go back to previous states
— Until reach a goal state

Suck(Left)
= | =4
3R | i
- Move(Right) ~a
i o P
R 2R e ﬂ
Move(Right)
Move(Left) ?
P ‘J; L \ﬁl 3 l
o8 | |2 a o
Suck(Left) ~ - %:e(Left)
=" i AR, T,./[‘_l
03R 2R _
Move(Right) Suck(Right)
—i‘f‘m'

Planning Algorithms as State-Space Search

« Backward (regression) relevant state-space search
— Start with a goal state (random if there are more than one)

— Examine all the relevant actions
« Could be the last step leading to the current state
» At least one effect is an element of the current state
» Has no effect that negates an element of the current state

— Avoid loop
— Until reach the initial state

! > P

L el Rt
Move(Right) S uck(Rm Move(Left)
Move(Right
Suck(Left)
S Move(Left)
Move(RigWA - /

=14,

gR |2R

Suck(Right)

Suck(Left)

> ‘e
3R 2R

Move(Left) Move(Right)

’ A)
< Lo —

Question

« The "have cake and eat cake” planning problem:

Init(Have(Cake, A))
Goal(Eaten(Cake, A) A Eaten(Cake, B))
Action(Eat(Cake, x),

PRECOND : Have(Cake, x)

EFFECT : ~Have(Cake, x) A Eaten(Cake, x))
Action(Bake(Cake, x),

PRECOND : —Have(Cake, x)

EFFECT : Have(Cake, x))

* For the Initial state, list all the applicable actions and the
resultant state for each of them.

 List three different plans (sequences of actions from the
initial state to the goal state).

JSS: an Example (Table)

* A solution is a schedule that processes these jobs with the
machines (Gantt chart)

S N

AddEnginel EngineHoist
AddWheels1 WheelStation 30
Inspectl Inspector 10
2 AddEngine2 EngineHoist 60
AddWheels2 WheelStation 15

Inspect2 Inspector 10

Search for Schedules

 [|nitial state
— Empty schedule, t=0, all operations unprocessed
— The first operation of each job is ready at time 0, all the other
operations are not ready

— All machines are idle at time O
« @Goal state: all operations processed

* Actions: Process(o, m, 1)
— Start processing operation o with machine m at time t
— Precondition:
* O unprocessed, and is ready at time t
* misidle att

— Effect:

* 0 processed
* next(o) (if exists) is ready at time t+ProcTime(0), and m is idle at

t+ProcTime(0)
« How to decide t?

Deciding Starting Time of Action

* Non-delay: start the action as soon as possible
— Operation earliest ready time
— Machine earliest idle time
— Earliest starting time: the later between the above two

* Find operation earliest ready time
— Initial: O for the first operation, and infinity for others
— When Process(o,m,t) is scheduled, then the earliest ready time of
next(o) becomes t+ProcTime(0)
 Find machine earliest idle time
— Initial: O
— When Process(o,m,t) is scheduled, then the earliest idle time of
machine m becomes t+ProcTime(0)

Update Earliest Ready and Idle Time

e p s
Earliest Idle Time Earliest Idle Time
EngineHoist = 0 EngineHoist = 90
WheelStation = 0 WheelStation = 60
Inspector =0 Inspector =0
EH: Earliest Ready Time EH: (AE1] AE2) Earliest Ready Time
WS: AE1 =0, AW1 =00, Ins1 =0 WS: AW1 Ins1 =60
Ins: \AE2 =0, AW2 =00, Ins2 = 00 Ins: . AW2 =90, Ins2 = o0
A
S 3
‘,: 4 B o 2
5<u Earliest Idle Time § Earliest Idle Time
1 EngineHoist = 30 < EngineHoist = 90
3 WheelStation = 0 2 WheelStation = 0
&) ()
o Inspector =0 o Inspector =0
Q| o e Q% ____________
Earliest Ready Time Earliest Ready Time
\ 4 AW1 =30, Ins1 = AW1 =30, Ins1 =0
EH: [ﬁﬂ kAE2 =0, AW2 =00, Ins2 = 00 EH: (AE1 | AE?)| L AW2 =90, Ins2 = ¢
: WS:

WS:
Ins: J Process(AE2, EH, 30) Ins:

Forward State-Space Search

Start from the initial state

— Empty schedule, t=0, all operations unprocessed

— The first operation of each job is ready at time 0, all the other
operations are not ready

— All machines are idle at time O
- Examine all the applicable actions Process(o,m,t)

— Enumerate each unprocessed operation o and its machine m
— Calculate the earliest starting time t
— Applicable if t < o

All the leaf nodes are goal states (all operations processed)
Each schedule is a path from the root node to a leaf node

Forward State-Space Search

EH:(1] 2]1 ProcessiAW2, ws,90) (EH(1 1 2)

WS: WS: -———
Ins: Ins:
Process(AE2, EH, 30)
EH)
WS: s
Ins:
xocess(AWL WS, 30)
Process(AE1, EH, 0) EH: h
WS: L
Ins: Process(Ins1, Ins, 60) |Ins:
- o - /
(2 D' 5 2 N
EH: Process(Ins2, Ins, 75) |EH:
Process(AE2, EH, 0) ws: > WS: -
Ins: roc Ins:
J eSSM &7 \ J
s E/i 6‘0}
Process(AW2, WS, 60) > <
EH: (2 | O T
EH:
: 2 i
WS: . =
Ins: J
Process(AE1, EH, 60)
-
: 2 [1)
: 2 1 e
SVHS-[| —(WS: C1 Jb---»
Ins: JProcess(AWL ws, 90) (Ins:)

Local Search (Hill Climbing)

« Step 1. Random generate a scheduling s;

« Step 2. Examine all the neighbors in the neighborhood of s,
and select the best neighbor s’;

« Step 3. If s’is better than s, set s < s’, and go to Step 2.
Otherwise return s.
AE2 <-> AE1: makespan = 155

makespan - 140 AW2 s AW1 makespan = 145 makeSpan - 130
EH: () I 1) W Ilns1 <-> Ins2: makespan = 130| EH: (2] 1)
WS: (2) (1) WS: 2) (1)
Ins: J Ins:
| AE2 <-> AET AE1 <-> AE2: makespan = 140
makespan = 155 v |AW2 e~ AVWT: makesban = 1 ﬂ makespan = 115
5\; L1 I 2] w [ns1 <-> Ins2: makespan = 145 \EVI;[1] 2]
3 2] = | : (1) 2
Ins: J Ins:

« Jump out of local optima: simulated annealing, genetic
algorithms, ...

14

Question

For the car manufacturing scheduling problem, consider 3 jobs as
summarized below:

Arrival Time Processing Time

AddEngine (AE) AddWheels (AW) Inspect (Ins)

Job 1 0 20 30 15
Job 2 0 45 20 20
Job 3 0 25 30 10

Given the partial schedule below:

Engine Hoist (EH) AE1

Wheel Station (WS)

Inspector

6 20 Time
List all applicable actions in this state, formatted as
(Operation,Machine,StartTime)

