Introduction to Artificial Intelligence

COMP307 Planning and Scheduling: Tutorial 1

Question

- Which of states below are valid states?
 - Painted(LeftWall)
 - -At(x)
 - \neg Clean(Cotton)
 - Rainy(Tomorrow) or Cloudy(Tomorrow)
 - Passed(DueDate(307A3))
 - Hold(Banana) and At(RoomC)

PDDL in Vacuum Cleaner's World

Update State with Action

- Delete list DEL(*a*): remove the fluents that appear as negative literals in the action's effects
- Add list ADD(a): add the fluents that are positive literals in the action's effects
- $s' = \text{RESULT}(s, a) = (s \text{DEL}(a)) \cup \text{ADD}(a)$
- · Example in the vacuum cleaner's world

$$- s_1 = At(Left), a_1 = MoveRight()$$

- EFFECT(a_1) = $At(Right) \land \neg At(Left)$
- $s_1 \mathsf{DEL}(a_1) = \emptyset$
- $\mathsf{RESULT}(s_1, a_1) = \emptyset \cup \mathsf{ADD}(a_1) = At(Right)$
- $s_2 = At(Right), a_1 = Suck(Right)$
 - $EFFECT(a_2) = Clean(Right)$
 - $s_2 \mathsf{DEL}(a_2) = At(Right)$
 - $\mathsf{RESULT}(s_2, a_2) = At(Right) \cup \mathsf{ADD}(a_2) = At(Right) \wedge Clean(Right)$

Planning Algorithms as State-Space Search

- Forward (progression) state-space search
 - Start with the initial state
 - Examine all the applicable actions for the current state
 - Avoid loop never go back to previous states
 - Until reach a goal state

Planning Algorithms as State-Space Search

- Backward (regression) relevant state-space search
 - Start with a goal state (random if there are more than one)
 - Examine all the relevant actions
 - Could be the last step leading to the current state
 - · At least one effect is an element of the current state
 - Has no effect that negates an element of the current state
 - Avoid loop
 - Until reach the initial state

Question

- The "have cake and eat cake" planning problem: *Init*(*Have*(*Cake*, *A*)) $Goal(Eaten(Cake, A) \land Eaten(Cake, B))$ Action(Eat(Cake, x)),**PRECOND** : Have(Cake, x)EFFECT : \neg *Have*(*Cake*, *x*) \land *Eaten*(*Cake*, *x*)) Action(Bake(Cake, x)),PRECOND : \neg Have(Cake, x) EFFECT : Have(Cake, x))
- For the initial state, list all the applicable actions and the resultant state for each of them.
- List three different plans (sequences of actions from the initial state to the goal state).

JSS: an Example (Table)

• A solution is a schedule that processes these jobs with the machines (Gantt chart)

Job	Operation	Machine	ProcTime
1	AddEngine1	EngineHoist	30
	AddWheels1	WheelStation	30
	Inspect1	Inspector	10
2	AddEngine2	EngineHoist	60
	AddWheels2	WheelStation	15
	Inspect2	Inspector	10

Search for Schedules

• Initial state

- Empty schedule, t=0, all operations unprocessed
- The first operation of each job is ready at time 0, all the other operations are not ready
- All machines are idle at time 0
- Goal state: all operations processed
- Actions: Process(o, m, t)
 - Start processing operation o with machine m at time t
 - Precondition:
 - o unprocessed, and is ready at time t
 - m is idle at t
 - Effect:
 - o processed
 - next(o) (if exists) is ready at time t+ProcTime(o), and m is idle at t+ProcTime(o)
- How to decide t?

Deciding Starting Time of Action

- Non-delay: start the action as soon as possible
 - Operation earliest ready time
 - Machine earliest idle time
 - Earliest starting time: the later between the above two
- Find operation earliest ready time
 - Initial: 0 for the first operation, and infinity for others
 - When Process(o,m,t) is scheduled, then the earliest ready time of next(o) becomes t+ProcTime(o)
- Find machine earliest idle time
 - Initial: 0
 - When Process(o,m,t) is scheduled, then the earliest idle time of machine m becomes t+ProcTime(o)

Update Earliest Ready and Idle Time

Forward State-Space Search

- Start from the initial state
 - Empty schedule, t=0, all operations unprocessed
 - The first operation of each job is ready at time 0, all the other operations are not ready
 - All machines are idle at time 0
- • Examine all the applicable actions Process(o,m,t)
 - Enumerate each unprocessed operation o and its machine m
 - Calculate the earliest starting time t
 - Applicable if $t < \infty$
- All the leaf nodes are goal states (all operations processed)
- Each schedule is a path from the root node to a leaf node

Forward State-Space Search

Local Search (Hill Climbing)

- Step 1. Random generate a scheduling s;
- Step 2. Examine all the neighbors in the neighborhood of s, and select the best neighbor s';
- Step 3. If s' is better than s, set s ← s', and go to Step 2.
 Otherwise return s.

• Jump out of local optima: simulated annealing, genetic algorithms, ...

Question

• For the car manufacturing scheduling problem, consider 3 jobs as summarized below:

	Arrival Time	Processing Time			
_		AddEngine (AE)	AddWheels (AW)	Inspect (Ins)	
Job 1	0	20	30	15	
Job 2	0	45	20	20	
Job 3	0	25	30	10	

• Given the partial schedule below:

 List all applicable actions in this state, formatted as (Operation,Machine,StartTime)