Introduction to Artificial Intelligence

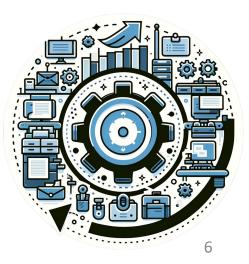
COMP307 Planning and Scheduling: Tutorial 2

Dispatching Rule

- Dispatching Rule: a rule to select one action in each state
 - Considering ONLY the earliest applicable actions (non-delay)
 - Assigning a priority to each earliest action by a priority function
 - Selecting the action with the highest priority
- An example: Shortest Processing Time (SPT)
 - Always select the shortest processing time
 - Priority of Process(o, m, t) is -ProcTime(o)

Generate a Schedule by Dispatching Rule

- Step 1: Initialize state
 - empty schedule, all operations unprocessed, time = 0, machine idle time = 0, first operation ready time = arrival time, other operation ready time = ∞
- Step 2: Find the earliest applicable actions;
- Step 3: Select the next action by the dispatching rule
- Step 4: Add the selected action into the schedule, update the state
- Step 5: If all operations are processed, stop. Otherwise, go to step 2.


Advantage of Dispatching Rule

- Can be apply at ANY time point to change the remaining \bullet schedule
 - Initial state = current state
 - But only need at critical time point (a machine becomes idle, an operation becomes ready)
- Select ONLY the next action to be taken, NO need to • generate the entire remaining schedule
- Very quick in real time, can handle dynamic environment very well
 - At each time point, complexity = #unprocessed ops * O(priority)

Generate Schedule by SPT

	Arrive	ProcTime		
		AddEngine	AddWheels	Inspect
Job 1	0	30	30	10
Job 2	0	60	15	10
Job 3	10	20	30	10

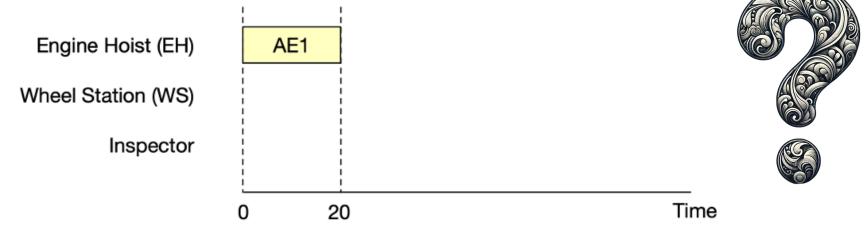


Handwritten solution

Generate Schedule by FCFS

	Arrive	ProcTime		
		AddEngine	AddWheels	Inspect
Job 1	0	30	30	10
Job 2	0	60	15	10
Job 3	10	20	30	10

Handwritten solution



Question

• For the car manufacturing scheduling problem, consider 3 jobs as summarized below:

	Arrival Time	Processing Time		
		AddEngine (AE)	AddWheels (AW)	Inspect (Ins)
Job 1	0	20	30	15
Job 2	0	45	20	20
Job 3	10	25	30	10

• Given the partial schedule below:

 Select the next action by the Shortest Processing Time (SPT) rule. Show your working.

Vehicle Routing

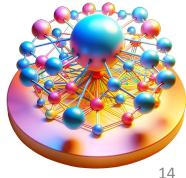
- Problem:
 - A graph with the node set and the edge set
 - A special depot node
 - Each edge has a cost (length, travel time, ...)
 - Each node except depot has a demand (customer demand)
 - Vehicles with limited capacity

• Find a **solution**:

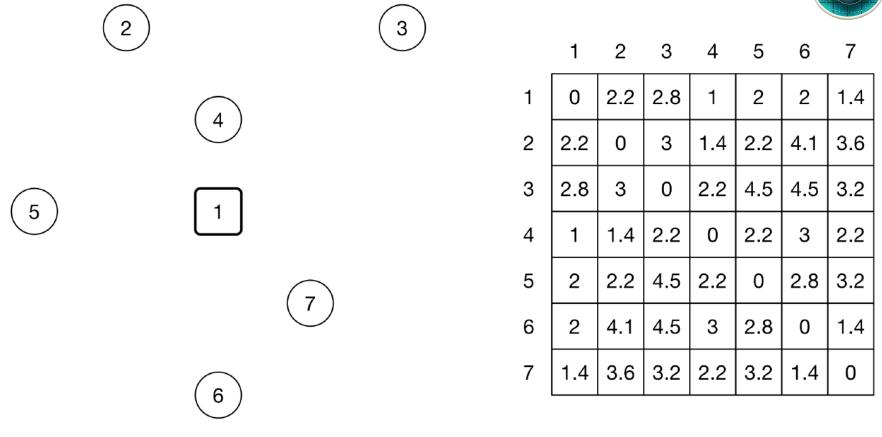
- A set of routes, each for a vehicle
- Each node is visited exactly once
- Each route starts and ends at the depot (cycle)
- The total demand of the nodes in each route does not exceed capacity
- **Objective**: minimize the total cost of the routes

Vehicle Routing is Hard

- Too many solutions
 - 10 nodes (excluding depot), 1 vehicle (TSP)
 - 3.6 million solutions
- NP-hard
 - Cannot guarantee to find the optimal solution in reasonable time
- How to Solve Vehicle Routing
 - Heuristics: Search for a reasonably good solution in a given (short) time
 - Introduced two heuristics in the lectures:
 - Nearest Neighbor heuristic
 - Savings heuristic

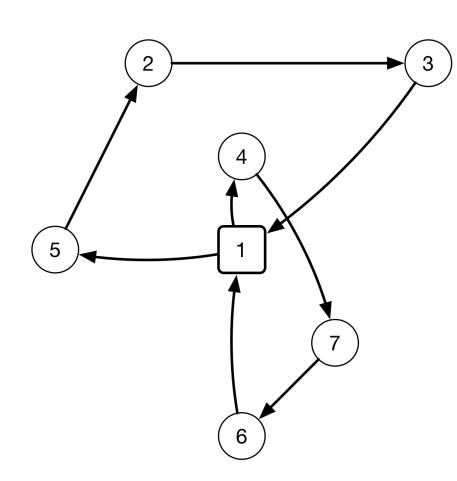

Question

- For a vehicle routing problem with one depot and 5 customers (customer locations). Assume
 - Each customer has a demand of 1.
 - The maximum capacity of each car is 4.
- What is the total number of possible solutions to this vehicle routing problem?


Nearest Neighbor Heuristic

- 1. Initialize a solution: a route starting from the depot
- 2. Append the nearest feasible node to the end of the current route
 - Unvisited
 - After inserting the node, the total demand of the route does not exceed the capacity
- 3. If no feasible node is found for the current route, then close the current route (return to the depot) and create a new route starting from the depot
- 4. Repeat 2. and 3. until all nodes are visited

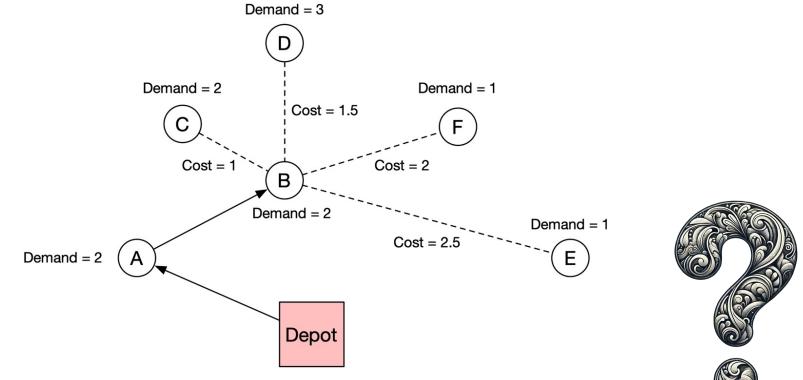
Generate VRP Solution



Capacity = 3

Handwritten solution

Savings Heuristic



Fe	easible r	nerge	es	 !
	Merge	Sav		N _
	(2,0)	Ê		
	(2,5)	Ê		
	(0,7)	Ê		
	٩,,,			
	(1,7)	ÛÊ		
	L		I	

Merge Sav			
(2,3)	2		
(2,5)	2		'
(6,7)	2		
(2,4)	1.8		'
(3,4)	1.6		
(4,7)	0.2		

Question

- Consider the vehicle routing with the partial solution [Depot, A, B]. Assume
 - Vehicle capacity is 5
 - Remaining nodes to visit is C, D, E, and F
 - Use the nearest neighbor heuristic

• List the next two steps (nodes to visit) selected by the nearest neighbor heuristic.