School of

Engineering and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 171 T1 2023

Ngā whakapūtanga o Te Haumaru rorohiko Cybersecurity Fundamentals

Classical Cryptography I

Learning objectives

- Define key terms such as **cipher**, **cryptography**, **cryptanalysis**, **plaintext**, **ciphertext**, **keys** and the role of Alice, Eve and Bob.
- Describe and compare the security of three classical symmetric algorithms (ciphers) for transforming plaintext in ciphertext: substitution, polyalphabetic substitution and one-time pad.
- Classical cryptosystems (substitution, transposition, and polyalphabetic substitution)

PART I: Cryptography history and terminologies

Cryptography

- kryptós "hidden, secret" and graphein, "to write"
- Specialised area of mathematics
- Protect information (confidentiality, integrity)
- Against an adversary who wishes to **intercept** or **modify** the data.
- Lack of use of cryptography resulted in many data breaches
- Used on the web, accessing remote systems, fundamental to financial systems

State-of-the-art over the ages

Some key terms

- Plaintext directly read by humans (used to be text, now its bits and bytes)
- **Ciphertext** encrypted data
- A cipher (or cryptographic algorithm) mathematics or algorithm that turns ciphertext into plaintext (and vice a versa)
- Encryption the process of "encipherment"
- **Decryption** the process of "decipherment"

Types of cryptography technologies

- The type of operations used for transforming plaintext to ciphertext
 - Substitution, transposition, product systems
- The number of keys used
 One key or different keys
- The way in which plaintext is processed
 O Block cipher, stream cipher

Encryption keys

- Keys determine the output from encryption and decryption process
- Key must be kept secret but not the cipher algorithm.
- Claude Shannon "one ought to design systems under the assumption that the enemy will immediately gain full familiarity with them"
- Keys in the following examples are characters, but a computer encryption key is a string of bits (01010111....)

• The total number of keys is 2^{key length}

Problem with short keys

- Besides frequency analysis and other methods, can try to brute force it!
- Brute force = try all combinations
- How long should a key be?
- It depends upon the power of the attacker.
- GPUs can test 100s of millions of symmetric cryptographic systems per second

What should we look for?

 An encryption scheme is computationally secure if the ciphertext generated by the scheme meets one or both of the following criteria:

The cost of breaking the ciphertext exceeds the value of the encrypted information

The time required to break the ciphertext exceeds the useful lifetime of the information

Quick exercise

 A 128-bit secret key is used. 1 second is needed to check one candidate key. How long will it take, on average, to find the secret key and decrypt the message?

Quick exercise

 A 128-bit secret key is used. 1 microsecond is needed to check one candidate key. How long will it take, on average, to find the secret key and decrypt the message?

PART II: Mathematical foundations

Modular arithmetic

• Divide two integers

$$\frac{A}{B} = Q \text{ remainder } R$$

 $\circ A \text{ is the dividend}$ $\circ B \text{ is the divisor}$ $\circ Q \text{ is the quotient}$ $\circ R \text{ is the remainder}$

- 11 divided by 5
 - A = 11, B = 5
 - \circ 11 divided by 5 = 2
 - Remainder is 11 2 * 5 = 11 10 = 1

Modular arithmetic

- Sometimes, we are only interested in what the **remainder** is when we divide A by B.
- For these cases, there is an operator called the *modulo* operator (abbreviated as mod).
- Using the same A B, Q and R as above, we would have: A mod B = R
- We would say this as A modulo B is equal to R. Where B is referred to as the modulus.
- 11 mod 5 = 1 because 1 is the remainder of 11/5
- 3 mod 5
 - \circ 3 divided by 5 = 0
 - Remainder is $3 0 \times 5 = 3 0 = 3$
- 15 mod 5
 - \circ 15 divided by 5 = 3
 - Remainder is $15 (3 \times 5) = 15 = 0$

Introducing binary and hexadecimal

• Decimal numbers are the countable numbers we use on an everyday basis and use base 10, e.g. 1, 2, 3, ... 20, 21,

• • •

- Binary numbers are used internally by computers and are numbers expressed using base 2, e.g. 1, 01, 11, ..., 10100, 10101, ...
- Hexadecimal numbers are often used by programmers because easy to convert to binary but take up less space when written, e.g. 1, 2, 3, ..., 14, 15 ...

Overview of decimal numbers

- Our decimal system uses 10 as a base
- Numbers range from 0 to 9
- Example 129

 100 + 20 + 9 = 129
- We can express this in terms of powers of base 10 as well

Binary number system

- Binary numbers are base 2 numbers, and have only two values 0 and 1.
- If we look at a binary number like 101, then we can again assign column values as we did with our decimal number, but this time we use 2, and not 10 as the base.
- So binary 101 binary has 1 in the units column,0 in the 2s column and 1 in the 4s column.
- Again if we work our way from right to left then:
- The 1 is a 1 as it is in the units column but the next 1 is not 1 but 1*4=4

Fours Units
$$2^{0} = 1$$

 $2^{0} = 1$
 $2^{0} = 1$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$

Hexadecimal number system

• Hexadecimal numbers are base 16 numbers.

Binary	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С
1101	D
1110	E
1111	F

Examples

- This is a useful tool: <u>https://www.rapidtables.com/convert/number/binary-to-decimal.html</u>
- And a good reading: <u>https://www.csfieldguide.org.nz/en/chapters/data-</u> <u>representation/numbers/</u>

PART III: Classical cryptography

Classical cryptosystems

- Transposition
 - Columnar
 - \circ Scytale
- Substitution

 Caesar
- Polyalphabetic substitution

 Viginere
 One time pad

These are all symmetric cryptosystems

Concept: *Transposition* ciphers

- Break a plaintext up into characters.
- Change the order of the characters according to fixed rules.
- Encryption algorithm:
 - Each character of the plaintext is reordered to form the ciphertext
- Decryption algorithm:
 - Each character of the ciphertext is reordered to form the plaintext

Example: Transposition ciphers

- Example is *columnar* transposition cipher
- Each plaintext character is written horizontally into a table with a specified alphabet.
- The table is read vertically in column order to create the ciphertext.

 Plaintext helloworld
 Ciphertext holewdlo Ir

Concept: Substitution ciphers

- Break a plaintext up into characters.
- Replace characters according to fixed rules.
- Encryption algorithm:
 - Every occurrence of one character *substituted* with same replacement character to create the ciphertext
- Decryption algorithm:
 - Substitute each character of the ciphertext with the one that it originally replaced

- Caesar (100-44 BCE) used to *encrypt* his messages using a very simple algorithm, which could be easily *decrypted* if you know the key.
- He would take each letter of the alphabet and replace it with a letter a certain distance away from that letter. When he got to the end, he would wrap back around to the beginning.
- Example with a shift of 3:

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z

 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z

 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 X
 Y
 Z
 A
 B
 C

CAT becomes FDW

sneaky

Example: Caesar cipher (cont.)

- Decryption requires applying the inverse of the shift operation, this could be represented as another table with the rows swapped.
- Example with a shift of 3:

Example: Caesar cipher

• You can use the shift value as the key for the cipher algorithm.

Question: how many keys?

- How many possible keys if the Caesar cipher is operating on the letters of the English alphabet A-Z?
- Is 0 a good choice of key?
- What about 26?

But I Don't Want to Make a Table!

- That's fine! If you know what the shift is, you can use something called *modulo*, which is commonly shortened to mod.
- Let's say we wanted to find 8 mod 5. We would divide 8 by 5 and find the remainder. So, in this case, 8 mod 5 = 3.
- In this case, 5 is called the *modulus*.
- Examples:
 - **19 mod 5 = ?**
 - 2 mod 5 = ?
 - **25 mod 5 = ?**

This week

- Labs start THIS week.
- On Tuesday,
 - we will continue with symmetric ciphers and related issues, and
 - discuss some modern symmetric cryptosystems.