
School of

Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 171 T1 2023
Ngā whakapūtanga o Te Haumaru rorohiko

Cybersecurity Fundamentals

Classical Cryptography II

CYBR171: Cybersecurity Fundamentals

Learning objectives

• Implementation of Caesar cipher.

• Understand some issues related to Caesar and other
substitution ciphers.

• Samples of modern symmetric ciphers.
o DES
o AES
o Blowfish

1

PART I:
Caesar’s Cipher implementation
and related issues

CYBR171: Cybersecurity Fundamentals

How Is That Helpful?

• When using a Caesar cipher, you assign each letter to an index
starting from 0.

• You would then compute the following.
(plain letter index + key) mod (total number of letters)

• This will give you the index of the encrypted letter!
• As you can see, the modulus is the total number of letters in the

alphabet. For English, this modulus is 26.

3

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CYBR171: Cybersecurity Fundamentals

A Simple Example

• Let’s say we have a 5 letter alphabet with only the letters A-E
• First, we assign each letter an index, starting from 0.

• We then have to choose a key. For this example, we’ll use 2.
• Let’s try encoding the word BEAD using the formula for the previous slide.
• The index of the letter B is 1. The key is 2. The modulus is 5, since the alphabet

is 5 letters.
• Let’s use the algorithm: (1+2) = 3. 3 mod 5 = 3. The index of D is 3, so B would

become the letter D.
• Using algorithm on each letter, can you encode the full word?

DBCA

A B C D E

0 1 2 3 4

4

CYBR171: Cybersecurity Fundamentals

Why Does Modding Work?
• The mod accounts for wrapping back around once you reach

the end of the alphabet.

• When converting the letter E using the key 2, you first add 4 +
2, which gives you 6. As you can see, the index 6 is beyond
the scope of this alphabet. When you do 6 mod 5, you get
the remainder of 1, which is how much you need to go back
and count from the beginning of the alphabet.

5

A B C D E

0 1 2 3 4

CYBR171: Cybersecurity Fundamentals

What About Decoding?
• To decode, you do the following:

(cipher letter index – key + total number of letters) mod
(total number of letters)

• Does anyone know why we can’t just do:
(cipher letter index – key) mod (total number of letters)?

• By adding the total number of letters, you don’t have to end
up taking the mod of a negative number.

• See if you can decode DBCA to get back to the word BEAD.
6

CYBR171: Cybersecurity Fundamentals

How Would You Program This?

• It’s unbelievably simple!
• The mod function is one of the most basic components

of a lot of programming languages. You’ll learn the mod
function for python early on. That means all we have to
deal with is indexing the letters.

• Believe it or not, this also is no problem. The solution
lies in UTF-8.

7

CYBR171: Cybersecurity Fundamentals

Wait, What’s ASCII?
• Computers have to represent everything as

numbers, including things as basic as text.

• ASCII was an early standard character
encoding scheme, where each symbol is
assigned a number.

• These symbols range from upper and lower
case letters to numbers to things like
punctuation and arrows.

• Problem was that the letters were related
to the Latin alphabet used by European
languages.

8

ASCII only
lets me use

Latin
characters

CYBR171: Cybersecurity Fundamentals

What’s UTF-8?
• Unicode is the universal standard for encoding all human languages. It supports

millions of characters. Even includes emojis. Unicode allows characters specific
to a particular language to be identified. It doesn’t map to a number though.

• UTF-8 is a way of expressing Unicode as numbers in one-byte numbers and
includes all of the ASCII characters. One byte is eight bits and can represent an
decimal value between 0 and 255.

• There are many tables online that allow you to look up the number associated
with each symbol. We’ll work with the integer values to start with but when
working in Linux you might see them represented as hexadecimal or even
binary.
https://blog.hubspot.com/website/what-is-utf-8

9

https://blog.hubspot.com/website/what-is-utf-8

CYBR171: Cybersecurity Fundamentals

The UTF-8 Table (Latin)

https://utf8-chartable.de/unicode-utf8-table.pl?utf8=dec

10

https://utf8-chartable.de/unicode-utf8-table.pl?utf8=dec

CYBR171: Cybersecurity Fundamentals

Using UTF-8 for Caesar’s Cipher
• You probably noticed that the letter A is associated with the

number 65, B with 66, C with 67, and so on.
• Most programming languages have a function that can take a

letter and find out it’s ASCII value.
• What would you need to do to make the ASCII encoded letters

usable for Caesar’s Cipher?
• Subtract 65 from each letter!
• Since it’s really simple to code for a computer to use mod and

assign the correct index for each letter, you can probably see how
programming a simple encoder/decoder would be a cinch!

11

PART II:
Issues of substitution ciphers
and solutions

CYBR171: Cybersecurity Fundamentals

The Problem with Caesar’s Cipher
• It’s too easy to break! To illustrate let’s consider a five letter alphabet

rather than our twenty six letter alphabet, i.e. ABCDE.
• Say you had the ciphertext DBCA, but didn’t know the key. It would be

easy to make a list of all possible keys. If you expected the unencrypted
text to be in English, you could easily figure out which word was right:

• Can make it harder to break by using the full English
alphabet and not restricting substitution to shifts only
means 26! or 403,291,461,126,605 combos.

13

Shift of 1 CABE

Shift of 2 BEAD ß The clear winner!
Shift of 3 ADEC

Shift of 4 ECDB

How dare you
insult my cipher!
Though, you have

a good point…

CYBR171: Cybersecurity Fundamentals

Improving on Caesar’s cipher
• You can make the job of cryptanalysis significantly hard by increasing the

alphabet and not restricting substitution to a single shift.
o Note that cryptanalysis is a process of finding weaknesses in cryptographic algorithms

and using these weaknesses to decipher the ciphertext without knowing the secret key.
• What does not restricting substitution to a single shift mean?

o Any letter can be mapped to any other letter
o Mapping is done by having a different shift for each letter in the alphabet

• Can visualise this as a plug board connecting the
plaintext alphabet with the ciphertext alphabet.
For example, A maps to D, B maps to A,
C maps to B, D maps to C.

• Using the full English alphabet and not restricting substitution to a single shift
means that there are now potentially factorial 26! or 403,291,461,126,605
combos.

14

A
B

C
D

A
B

C
D

CYBR171: Cybersecurity Fundamentals

The problem with substitution ciphers
• Al-Kindi’s (800-873 CE) insight was that characteristics of a letter are not changed by

fixed substitution of one letter or another letter or symbol.
• Frequency of occurrence of each letter will be unchanged between the plaintext and

ciphertext.
• Cryptanalysis can use this information to make educated guesses about the substitution-

rules based on looking for the most common ciphertext letter and assuming it maps to
the most common plaintext letter. Repeat for other letters.

• For example, most common letters in English are EARI and O. Assume that our ciphertext
most common letters are FCEUR.
o Where a simple SHIFT is used, could assume that F is E

so and try a shift of one and see if the result of the
decryption makes sense in English

o Where any substitution is allowed, could assume F->E, C->A,
E->R, U->I, R->O.

15

Uhoh! The
relative

frequencies do
not change!

CYBR171: Cybersecurity Fundamentals

A solution - Polyalphabetic ciphers
• Blaise de Vigenere (1523-1596 CE) cipher breaks relative frequency by changing the

substitution rule for every character of the plaintext.
• For Vigenere, as the length of the keyword increases, the letter frequency shows less

English-like characteristics and becomes more random.
• Simple scheme is to use Caesar ciphers with different shifts for each letter in the

plaintext.
o First letter of message, shifted by 7, second letter of message, shifted by 14, third letter of message,

shifted by 19, fourth letter of message, shifted by 7 … repeat the shifts 7, 14, 19 throughout rest of
message.

o Key is now the number sequence 7, 14, 19.
o Key is usually written as characters rather than numbers so hot

o Note that T maps to A sometimes and other times T maps to M.

16

CYBR171: Cybersecurity Fundamentals

How to break a polyalphabetic cipher?
• Parallel invention – Prussian colonel Friedrich Wilhelm Kasiski (1805-1881) and Charles Babbage (1701-

1871).
• Observation – if we use N different substitutions in a periodic fashion then every Nth character is

enciphered with the same monoalphabetic cipher.
• Key is to find N, the length of the key and apply frequency analysis to sub-cryptograms composed of every

Nth character of the cryptogram.
• We find N by looking for repeated sequences in the ciphertext.

• Based upon our example from the previous slide, the possible candidates for N = 3 and N = 9. Break into
multiple sequences and apply frequency analysis.

17

CYBR171: Cybersecurity Fundamentals

Enigma machine – automated analysis
• Electromechanical machines built to implement polyalphabetic

ciphers:
o Rotor machines that implement shifting for Caesar ciphers
o Multiple rotors used to implement Viginere-style ciphers
o Plug boards used to implement general substitution of the output of

the rotors
o Trillions of possible permutations possible

• Most famous of these machines was the Enigma used by
Germans for secure communication to support military
operations.

• Initial breakthrough determined wiring of one rotor by Marian
Rejewski from Cipher Bureau of Polish Intelligence Service in
Warsaw (1933) allowing decryption of German messages

• After invasion of Poland, effort passed to Bletchley Park in
England to apply these ideas to further cryptanalysis. Alan Turing
developed a special purpose electromechanical computer called
the “bombe” that automated cryptanalysis,

18

CYBR171: Cybersecurity Fundamentals

Requirements and aids for success
• Requirements for successful cryptanalysis:

o You need to know the language used for the plaintext.
o You need to know the relative frequencies of letters in the plaintext.
o You must have plenty of ciphertext to analysis for frequency analysis.

• Aids for success (human error):
o You hope that the key is used repeatedly to increase the amount of ciphertext available or they use it

for very long messages.
o You hope that you have some cribs (plaintext) and encrypted version (cipher text) that allow you to

quickly discard some potential keys.
o You hope that the choice of new keys follows a pattern that you can guess.

• This was used to speed up analysis of Enigma messages:
o Operators chose obvious keys (three successive letters)
o Operators repeated the same key (initials of their name)
o Operators changed the keys daily but followed certain rules reducing the possible number of keys (no

rotor setting was repeated from one day to the next, and no letter of plugboard replaced by its
neighbouring letters).

19

CYBR171: Cybersecurity Fundamentals

Concept: One time pad (OTP)
• A one-time pad is the only cipher scheme that is unbreakable,

that is prefect secrecy is achieved.
• Invented by Frank Miller (1882) for telegraph messages and went

through various refinements.
• Similar to a polyalphabetic substitution except that the secret key

is random, same length as the plaintext and used only once.
o These are actually quite hard to achieve in practice

• Proof by Shannon, the key idea being that because of random key
all possible messages are equally likely, so there is no way to know
which one is correct.

20

CYBR171: Cybersecurity Fundamentals

Who uses them - Spies!
• Random one time pads needed to be:

o Very small to hide them
o Easily destroyable
o Used numbers to make it easy to implement, just add them to a number representing

your letter (no carries)
o Tradecraft followed and only every used once

• German Foreign Office GEE [1923-1945] used flawed implementation:
o Pseudo-random generator for OTP
o WW II British were able to predict output of GEE pseudo-random generator making it

possible to reverse-engineer the sequence
• British Special Operations Executive in WW II

o Small paper sheets used (mickey mouse pads)
o Printed silk scarves

• Believed to still be used by spies today …
21

PART III:
Modern cryptography

CYBR171: Cybersecurity Fundamentals

DES
• Data Encryption Standard.

• 1970s, adopted by US forerunner of NIST

• Small key size (56 bits), easy to crack with
brute force (<1 day).

• Led to competition for new standard, and
use of triple DES (three rounds, three 56 bit
keys)

• Triple DES is predicted to be safe until 2030.
23

CYBR171: Cybersecurity Fundamentals

AES

• Advanced Encryption Standard.
• Adopted in 2001 as US Government

standard.
• Competition between fifteen designs

(1997-2000).
• Rijndael won out as the basis of AES

over Blowfish-variant.
• 128, 192 or 256 bit keys.
• Widely used, Windows 2000 onwards.

24

CYBR171: Cybersecurity Fundamentals

Blowfish
• Early 1990s, potential drop-in

replacement for DES
• Was unusual as having public domain

status (you can use it for free).
• Variable key lengths from 1 to 448 bits.
• No successful attempt to break it as

long as setup key right (they can take a
while and people skip setting them up
properly).

25

