School of

Engineering and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 171 T1 2023

Ngā whakapūtanga o Te Haumaru rorohiko Cybersecurity Fundamentals

Modern Cryptography II Key Distribution and Diffie Hellman

What are we going to cover

- Key distribution problem
- Diffie-Hellman
- MiTM attacks
- Fingerprinting
- Wrap up and what's next

PART I:

Key Distribution Problem

Alice, Bob and Eve

 Cryptographers use the fictional characters "Alice" and "Bob" exchanging messages.

 An eavesdropper "Eve" is usually listening, there is also "Mallory" and "Trudy".

I'VE DISCOVERED A WAY TO GET COMPUTER SCIENTISTS TO LISTEN TO ANY BORING STORY.

https://xkcd.com/1323/

Key Distribution Problem

- Alice wants to send an encrypted message to Bob across an "unsafe" network.
 - A real-world example of this is a <u>public wifi network</u> where anyone can connect
- Eve is listening on the network, so Alice can't send the key as well.
- Alice can't simply encrypt the key because we have the same problem again, how to send that encryption key.
- Alice could always walk it across to Bob but that might be
 physically impossible or cumbersome whenever a key needs to be
 changed.

Diffie-Helman Key Exchange (DHKE)

- Diffie & Hellman with Merkle (1976).
- 1st Public-key cryptography scheme.
- Alice and Bob want to compute shared secret key.
- The secret key is never sent over the network.
- Requires hard-to-reverse method of combining elements.
- Basis of Transport Layer Security that secures SSH and HTTPS

PART II:

Diffie-Hellman

Key Exchange by Mixing Colours

Assume:

- Two liquids of different colours
- Mix colours to obtain a new colour.
- No way to separate mixed colours out again.

Scenario:

- Alice and Bob agree on starting shared colour (it doesn't need to be secret).
- Alice and Bob select a secret colour (not shared).
- Alice and Bob mix their secret colour with mutually shared colours.

Source: https://en.wikipedia.org/wiki/Diffie-Hellman key exchange

Diffie-Hellman protocol 1

What does this look like in practice?

Diffie-Hellman protocol 2

What does this look like in practice?

Diffie-Hellman protocol 3

What does this look like in practice?

PART II:

Man-in-the-Middle Attack (MitM)

MitM attack on Diffie-Hellman

- Mallory-in-the-middle, man-in-the-middle, monster-in-the-middle, machine-in-the-middle, monkey-in-the-middle or person-in-the-middle.
 - Mallory intercepts communications between Alice and Bob
 - Aim is to be able to eavesdrop on secret messages and optionally change them

MitM attack on Diffie-Hellman (cont.)

- Mallory-in-the-middle, man-in-the-middle, monster-in-the-middle, machine-in-the-middle, monkey-in-the-middle or person-in-the-middle.
 - Mallory intercepts communications between Alice and Bob
 - Aim is to be able to eavesdrop on secret messages and optionally change them
 - Abbreviate public key to PK and secret key to SK

MitM attack on Diffie-Hellman (cont.)

- Alice encrypts message using her key shared with "Bob".
- Mallory "Bob" decrypts the message and reads or modifies it.
- Mallory "Alice" encrypts the message using their key shared with Bob.
- Bob decrypts message using his key shared with "Alice"

MitM attack on Diffie-Hellman (cont.)

Alice and Bob believe they are talking securely with each other

Mallory is able to secretly eavesdrop or modify their communications

Detecting MiTM

- Alice and Bob compare their secret keys.
 - Same? Trust the keys, no MiTM is happening.

Different? Dob't trust the keys, MiTM happening.

Detecting MiTM (cont.)

- Alice and Bob compare their sorret keys.
 - Same? Trust the keys, To Will happening.

Different? Don't trust the keys, MiTM happening.

Problems with direct comparison

- Send secret keys in plaintext
 - Defeats the purpose of the protocol

- Encrypt the secret key
 - Alice and Bob decrypt and compare keys
 - Mallory manipulates the keys to appear the same

Out-of-band communication

Out-of-band refers to the communication channel

- Alice phones Bob
 - Compare the secret keys
 - Mallory cannot intercept phone calls
 - Mallory cannot manipulate keys
- Secure method but is it practical?
 - o Is there a way to avoid sharing the whole key?

PART III:

Fingerprinting

Cryptographic Hash

- Hash function
 - output = hash(input)
 - Input: Data of arbitrary size
 - Output: Data of fixed size
- Fingerprint, digest, hash value or hash of the input
- Four properties:
 - Same input = same output
 - Can't workout input from knowing output (one way)
 - Two different inputs ≠ same output (collision)
 - Small change to input = large change to the output

Examples

- MD5
 - 128-bit fingerprint
- SHA family
 - o SHA-1
 - 160 bits
 - Collisions possible
 - SHA-2 (current)
 - **224, 256, 384 or 512 bits**
 - SHA-3 (new)
 - Arbitrary bits, fundamentally different inside

Detection of MitM using Fingerprinting

- Two in-band methods:
 - Weak password
 - Key comparison in voice calls
- Both are variations of the in-band method.

 Both are limited but are good examples of the design of security protocols.

Weak Password

- Alice and Bob know the same weak password
 - Assume know it because of prior knowledge
 - Something they can guess (hence weak)
 - An example would be that they know which street Alice grew up on
- Hash computed with password and key

Detection of MitM Attack

- Mallory will generate different hashes because:
 - Mallory has different keys shared with Alice and Bob
 - Mallory doesn't know the password that is shared between Alice and Bob
- Alice and Bob will assume MitM attack

Key Comparison in Voice Calls

- Application agree on a secret key to encrypt voice calls
- Send hashes over the same communications channel
- Method to check that no MitM is happening:
 - Alice and Bob agree on a secret key using <u>Diffie-Hellman</u>
 - Alice and Bob both calculate the hash of the secret key
 - Convert hash to TWO human readable words
 - E.g. Orange Banana
 - Alice reads out the first word to Bob
 - Bob reads out the second word to Alice
 - Alice & Bob should have the same pair of words

Detection of MitM Attack

- Alice and "Bob" (really Mallory) agree on a secret key using Diffie-Hellman
- Alice now wants to check she is really talking to Bob
- Alice and "Bob" calculate a hash as two human-readable words
 - o E.g. Kiwifruit Mango
- Alice reads the first word to "Bob" and waits for "Bob" to read the second word
- Alice and Bob will have different pairs of words if Mallory is in the middle

Why Can't Mallory Pretend to be Bob?

- First, it relies on Alice recognising Bob's voice.
 - When Mallory speaks, Alice knows it isn't Bob.
 - This is a form of biometric (see next week).
- Second, Mallory won't know the shared key if started impersonating Bob after the shared key was agreed.
 - Mallory won't be able to provide the correct second word
 - Mallory would have been able to do so had Alice told "Bob" both words in the first place (which is why we don't do this!)
- These are two layers of countermeasures put in place to try and detect a MitM

Real MitM attacks

- China blocked github Jan 2013
- China "re-opened it" later.
- Users reported fingerprints failing.
- China had mounted a MitM attack.

https://theprivacyblog.com/blog/censorship/china-launches-mitm-attack-on-github

PART IV: Wrap up

Summary of Lecture

- Diffie-Hellman solves the key distribution problem across an unsafe network.
- MiTM attack on Diffie-Hellman possible.
- In-band detection techniques possible using fingerprinting.
- In-based detection techniques still assume some prior knowledge (password, voice patterns or shared secret key).
- Next lecture RSA algorithm avoids this problem by introducing different public and private keys for each party in a conversation.

What's up next

- More material in the next lecture.
 - RSA explained
 - Applications of RSA
 - Quantum and post-quantum