School of

Engineering and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 171 T1 2023

Ngā whakapūtanga o Te Haumaru rorohiko Cybersecurity Fundamentals

Week 10 - Physical Security

Objectives

- Understanding the importance of physical security
- Looking for physical security vulnerabilities
- Implementing countermeasures for physical security attacks

What is Physical Security?

- *Physical security* is concern with the protection of physical property.
- It encompasses both technical and nontechnical components, both of which must be addressed.

- <u>Safety</u> refers to the systems that react to/in abnormal events by minimising their impact, preserving human life, and protecting property.
 - **Examples**: Earthquake, fire, flood, and natural or human accidents.
- <u>Security</u> represents the systems that <u>prevent</u>, detect, alarm, delay and respond to, interrupt, and neutralise a malevolent human adversary.
 - **Examples**: Insider theft, direct attack, and material diversion.

Safety vs security (cont.)

CYBR171: Cybersecurity Fundamentals | Ngā whakapūtanga o Te Haumaru rorohiko

Physical Protection System Integration Objectives

- Security—the layered "wrapper" around asset(s)
- Protection/Defense in depth
- Minimised consequences of component failure, e.g., power generation
- Balanced protection (equally bad choices)

"If you think technology can solve your problems, then you don't understand the problems and you don't understand the technology."

-Bruce Schneier

What is the problem?

- Physical security is an often-overlooked but critical aspect.
- Securing your information depends on your ability to physically secure your office, building, or campus.
- Regardless of your security technology, practically any breach is possible if an attacker is in your building or data centre.

Security focus

"Let us not look <u>back in anger</u> or <u>forward in</u> <u>fear</u>, but around in awareness."

—James Thurber

PHYSICAL SECURITY VULNERABILITIES

R

Physical Security Vulnerabilities

- Depend on, but not limited to:
 - $\,\circ\,$ Size of building.
 - \circ Number of buildings or office locations.
 - \circ Number of employees.
 - Presence of a receptionist or security guard.
 - Location and number of building entrance and exit points.
 - Placement of server rooms, wiring closets, and data centres.

Assessing Your Organization's Physical Security

- Building infrastructure
- Utilities
- Office layout and use

Network components and computers

BUILDING INFRASTRUCTURE

R

Attack Points

- Doors
 - Propped open
 - Gaps at the bottoms
 - Easy to force open
 - o Hinges
 - o Material
 - \circ Look-through
- What is the building or data centre made of?
 - walls and entryways
 - o slab-to-slab walls
 - how resilient the material is to earthquakes, tornadoes, strong winds, heavy rains, and vehicles driving into the building
- Windows
- Drop ceilings with tiles that can be pushed up

Countermeasures

- Strong doors and locks.
- Motion detectors.
- Cameras to discourage criminal activity
- Windowless walls around data centres.
- Signage that makes it clear what's where and who's allowed.
- A continuously monitored alarm system
- Lighting
- Entrances that allow only one person at a time
- Fences (with barbed wire or razor wire if necessary).

UTILITIES

1

Attack Points

- Power-protection
 - Surge protectors, generators, UPSes
 - On/off power switch
- When the power fails
 - \circ fail open
 - \circ fail closed
- Fire-detection and suppression devices
 - Alarm sensors, extinguishers, and sprinkler systems

- \circ position
- accessibility (network and default login credentials)
- Water and gas shutoff valves
 - Can you access them or a maintenance personnel is needed
- Local telecom wires that run outside the building
 - $\circ~$ above ground,
 - \circ buried,
 - \circ on telephone poles

Countermeasures

- Major utility controls are placed
 - $\,\circ\,$ behind closed and lockable doors
 - fenced areas
 - \circ out of the sight of people passing through or nearby
- Cameras with ample coverage
- Devices accessible over the network

o tested

- $\,\circ\,$ disable that feature if not needed
- \circ limit who can access the systems

OFFICE LAYOUT AND USE

CYBR171: Cybersecurity Fundamentals | Ngā whakapūtanga o Te Haumaru rorohiko

Attack Points

- Main doors of the building
- Desks
- Mail and packages
- Trash cans and bins, recycling bins, and shredders (dumpster diving)
- Copy rooms and fax machines
- Network cameras and digital video recorders (default settings)
- Access controls on the doors
 - $\circ \quad \text{regular keys} \quad$
 - $\circ \quad \text{card keys} \quad$
 - \circ combination locks
 - o biometrics
- Keys and programmable keypad combinations

Countermeasures

- A receptionist or a security guard
- Make it policy for all employees to
 - o question strangers
 - o **report** strange behaviour
- A single entry and exit points to a data centre
- Place trash bins in secure areas.
- Use cameras to monitor critical areas
- Dispose of hard-copy documents in cross-cut shredders or secure recycling bins
- Limit the numbers of keys distributed
- Ensure that access is also logged and monitored
- Use electronic badges
- Use biometric identification systems

NETWORK COMPONENTS AND COMPUTERS

F

Attack Points

- Network
 - o servers, firewalls, and routers
 - network diagrams
 - o switches
- Computer
 - Passwords
 - Files
 - Installing network analyser software
 - o accessibility
- Penetration drop boxes <u>https://video.link/w/T6vo</u>
- Contact lists
- Disaster recovery plans
- Laptops, mobile phones and tablets
- Sticky notes
- Backup media
- Safes (if used to store backup media)
- Cables and patch panel

Countermeasures

- Make your users aware of <u>what to look out for</u>
- Require users to lock their screens
- Ensure that strong passwords are used
- Laptops and PCs are locked to the desks
- Full disk encryption technologies for laptops
- Server rooms and wiring closets (locked and Monitored)
- Use modern access control systems instead of traditional door locks and keys
- Scan for rogue wireless access points, and shut them down
- Secure patch panels
- Use a bulk eraser on magnetic media and shred them before they are discarded

REMARKS

Remarks

- Detectors and responders

 Human vs technology (automatic/manual)
- Multiple systems

 Harder and stronger every level
- Do not make it too attractive
- Balanced security
- Secure your assets don't just hide them
- Think about other elements, e.g., birds, rain, and lightning strikes

Remarks (cont.)

- Understand the motivations of your attackers, e.g., sabotage and espionage
- Estimate the **number** of your attackers
 - One attacker, multiple roles
- What tools do they have or can get
 - How heavy are these tools?
- What **equipment** are you have at the facility?
- How much **knowledge** about your system do they have?
 - $\circ~$ You must assume that they know everything
- Do people count as assets?
 - o Patents

"We only need to be lucky <u>once</u>. You need to be lucky <u>every time</u>."

-The IRA to Margaret Thatcher

What we covered...

- Discussed common physical security weaknesses.
- Outlined some low-cost countermeasures.