
Read User Input:

#!/bin/sh
echo "Please enter some input: "
read input_variable
echo "You entered: $input_variable"

#!/bin/bash
echo Please, enter your firstname and lastname
read FN LN
echo "Hi! $LN, $FN !"

#!/bin/bash
read three numbers and assigned them to 3 variables
echo "Enter number one : "
read n1
echo "Enter number two : "
read n2
echo "Enter number three : "
read n3

#!/bin/bash
Delete a directory

echo "Enter directory to delete : "
read dirname
rm -r $dirname

install a package and show if it is installed

echo -e "Enter a package to install: "
read packagename
apt-get install $packagename
echo “”
dpkg -l $packagename
echo “The requested package $packagename was successfully installed”

#!/bin/bash
 # read a date from user and show calendar. Pay attention to echo command with \c and
without.

echo -e "Enter a month name (e.g. dec): \c"
read month
echo "Enter a year (e.g. 2012)"
read year

display the calendar
cal –m $month $year

f Statement Syntax

if [conditional expression]
then

statement1
statement2
.

Fi

If-elif-else Syntax

if [expression 1]
then

Statement(s) to be executed if expression 1 is true
elif [expression 2]
then

Statement(s) to be executed if expression 2 is true
elif [expression 3]
then

Statement(s) to be executed if expression 3 is true
else

Statement(s) to be executed if no expression is true
fi

#!/bin/sh

a=10
echo “Enter another number: ”
read b

if [$a == $b]
then

echo "a is equal to b"
else

echo "a is not equal to b"
fi

#!/bin/bash
count=99
if [$count -eq 100]
then
echo "Count is 100"

else
echo "Count is not 100"

fi

#!/bin/sh
echo -e “Enter a number: \c”
read count
if [$count -eq 100]
then
echo "Count is 100"

elif [$count -gt 100]
then
echo "Count is greater than 100"

else
echo "Count is less than 100"

fi

#!/bin/bash
find if the number entered by the user is even or odd!
number=0

echo -n "Enter a number "
read number

echo "The number you entered is: $number"
if [$((number % 2)) -eq 0];

then echo "Number is
even"

else
echo "Number is odd"

fi

Expressions used with if

Primary expressions

Primary Meaning

[-a FILE] True if FILE exists.

[-b FILE] True if FILE exists and is a block-special file.

[-c FILE] True if FILE exists and is a character-special file.

[-d FILE] True if FILE exists and is a directory.

[-e FILE] True if FILE exists.

[-f FILE] True if FILE exists and is a regular file.

[-g FILE] True if FILE exists and its SGID bit is set.

[-h FILE] True if FILE exists and is a symbolic link.

[-k FILE] True if FILE exists and its sticky bit is set.

Primary Meaning

[-p FILE] True if FILE exists and is a named pipe (FIFO).

[-r FILE] True if FILE exists and is readable.

[-s FILE] True if FILE exists and has a size greater than zero.

[-t FD] True if file descriptor FD is open and refers to a terminal.

[-u FILE] True if FILE exists and its SUID (set user ID) bit is set.

[-w FILE] True if FILE exists and is writable.

[-x FILE] True if FILE exists and is executable.

[-O FILE] True if FILE exists and is owned by the effective user ID.

[-G FILE] True if FILE exists and is owned by the effective group ID.

[-L FILE] True if FILE exists and is a symbolic link.

[-N FILE] True if FILE exists and has been modified since it was last read.

[-S FILE] True if FILE exists and is a socket.

[FILE1 -

nt FILE2]

True if FILE1 has been changed more recently than FILE2, or if FILE1 exists

and FILE2 does not.

[FILE1 -

ot FILE2]

True if FILE1 is older than FILE2, or is FILE2 exists and FILE1 does not.

[FILE1 –

ef FILE2]

True if FILE1 and FILE2 refer to the same device and inode numbers.

#!/bin/bash
echo “enter an absolute path to a file name:”
read FILE

if [-f "$FILE"];
then
echo "File $FILE exist."
else
echo "File $FILE does not exist" > /tmp/ExistsOrNot.txt #write the error message to a file!
fi

#!/bin/bash
echo “enter a directory path:”
read dirpath
dirpath=$dirpath/Test*
if test -s $dirpath

then
echo "found one"

else
echo "found none"

fi

#!/bin/bash
echo “enter an absolute path to a file name:”
read FILE

if [-g "$FILE"];
then

echo "File $FILE exist and its SGID is set"
else
#write the error message to a file!

echo "File $FILE does not exist or SGID not set!" > /tmp/ExistsOrNot.txt
fi

For Statement

#!/bin/bash

for i in 1 2 3 4 5 do

echo "Welcome $i times"

done

#!/bin/bash

i=1
for day in "Mon Tue Wed Thu Fri"
do
echo "Weekday $((i++)) : $day"

done

While Statement

#!/bin/bash
COUNTER=0
while [$COUNTER -lt 10];
do

echo The counter is $COUNTER
COUNTER=COUNTER+1

done

Case (Normal Case)

#!/bin/bash

echo "What is your preferred programming / scripting language"
echo "1) bash"
echo "2) perl"
echo "3) phyton"
echo "4) c++"
echo "5) I do not know !"
read selection;
#simple case bash structure
case $selection in

1) echo "You selected bash";;
2) echo "You selected perl";;
3) echo "You selected phyton";;
4) echo "You selected c++";;

5) exit

esac

#!/bin/bash

echo "What is your preferred programming / scripting language"
echo "a) bash"
echo "b) perl"
echo "c) phyton"
echo "d) c++"
echo "e) I do not know !"
read selection;
#simple case bash structure
case $selection in

a | A) echo "You selected bash";;
b | B) echo "You selected perl";;
c | C) echo "You selected phyton";;
d | D) echo "You selected c++";;

e | E) exit

esac

Case example (repeat until user exits (using until))

#!/bin/bash

Selection =
until ["$selection" = "0"];
do echo ""

echo "PROGRAM MENU"
echo "1 - display free disk space"
echo "2 - display free memory"
echo ""
echo "0 - exit program"
echo ""
echo -n "Enter selection: "
read selection
echo ""
case $selection in

1) df ;;
2) free ;;
0) exit ;;
*) echo "Please enter 1, 2, or 0"

esac
done

