Read User Input:

#!/bin/sh

echo "Please enter some input: "
read input_variable

echo "You entered: $input_variable"

#!/bin/bash

echo Please, enter your firsthame and lastname
read FN LN

echo "Hi! $LN, $FN !"

#1/bin/bash

read three numbers and assigned them to 3 variables
echo "Enter number one : "

read nl

echo "Enter number two : "

read n2

echo "Enter number three : "

read n3

#!/bin/bash
Delete a directory

echo "Enter directory to delete : "
read dirname
rm -r $dirname

install a package and show if it is installed

echo -e "Enter a package to install: "

read packagename

apt-get install $packagename

echo ¥

dpkg -l $packagename

echo “The requested package $packagename was successfully installed”

#!/bin/bash
read a date from user and show calendar. Pay attention to echo command with \c and
without.

echo -e "Enter a month name (e.g. dec): \c"
read month

echo "Enter a year (e.g. 2012)"

read year

display the calendar
cal -m $month $year

f Statement Syntax

if [conditional expression]
then
statementl
statement2

Fi

If-elif-else Syntax

if [expression 1]
then

Statement(s) to be executed if expression 1 is true
elif [expression 2]
then

Statement(s) to be executed if expression 2 is true
elif [expression 3]
then

Statement(s) to be executed if expression 3 is true
else

Statement(s) to be executed if no expression is true
fi

#!/bin/sh

a=10
echo “Enter another number: ”
read b

if [$a==%b]
then

echo "a is equal to b"
else

echo "a is not equal to b"
fi

#1/bin/bash
count=99
if [$count -eq 100]
then
echo "Count is 100"
else
echo "Count is not 100"
fi

#1/bin/sh
echo -e “Enter a number: \c”
read count
if [$count -eq 100]
then
echo "Count is 100"
elif [$count -gt 100]
then
echo "Count is greater than 100"
else
echo "Count is less than 100"
fi

#!/bin/bash
find if the number entered by the user is even or odd!
number=0

echo -n "Enter a number "
read number

echo "The number you entered is: $number"
if [$((number % 2)) -eq 0];
then echo "Number is

even"
else

_ echo "Number is odd"

fi

Expressions used with if

Primary expressions

Primary

[-aFILE]
[-oFILE]
[-cFriLE]
[-aF1LE]
[-eF1LE]
[-fFrILE]
[-gF1LE]
[-hFr1LE]

[-xF1LE]

Primary

[-pFiLE]
[-rFriiE]
[-sFILE]
[-tFD]

[-uFriLE]
[-wFrILE]
[-xF1LE]
[-oFTLE]
[-cFILE]
[-LF1LE]
[-NFILE]

[-sF1LE]

Meaning

True if FILE exists.

True if F1LE exists and is a block-special file.
True if F1LE exists and is a character-special file.
True if F1LE exists and is a directory.

True if FTLE exists.

True if F1LE exists and is a regular file.

True if rF1LE exists and its SGID bit is set.

True if r11E exists and is a symbolic link.

True if rF1LE exists and its sticky bit is set.

Meaning

True if r11E exists and is a named pipe (FIFO).

True if r1LE exists and is readable.

True if rF1LE exists and has a size greater than zero.

True if file descriptor £p is open and refers to a terminal.
True if F1LE exists and its SUID (set user ID) bit is set.
True if rF11E exists and is writable.

True if F1LE exists and is executable.

True if r1LE exists and is owned by the effective user ID.
True if r1LE exists and is owned by the effective group ID.
True if rF11E exists and is a symbolic link.

True if r1LE exists and has been modified since it was last read.
True if F1LE exists and is a socket.

[FILEL - True if FrLE1 has been changed more recently than rIrE2, or if FTLEL exists
nt FILE2] and r1re2 does not.

[FILEL -

True if FrLE1 is older than FI1LE2, Or is FILE2 exists and rF1LE1 does not.
ot FILE2 |

[FILEL -

N True if rrLE1 and FrLE2 refer to the same device and inode numbers.
e

#!/bin/bash
echo “enter an absolute path to a file name:”
read FILE

if [-f "$FILE"];

then

echo "File $FILE exist."

else

echo "File $FILE does not exist" > /tmp/ExistsOrNot.txt #write the error message to a file!
fi

#!/bin/bash
echo “enter a directory path:”
read dirpath
dirpath=$dirpath/Test*
if test-s $dirpath
then
echo "found one"
else
echo "found none"
fi

#!/bin/bash
echo “enter an absolute path to a file name:”
read FILE

if [-g "$FILE"];
then
echo "File $FILE exist and its SGID is set"
else
#write the error message to a file!
echo "File $FILE does not exist or SGID not set!" > /tmp/ExistsOrNot.txt
fi

For Statement

#!/bin/bash
foriin12345do

echo "Welcome $i times"
done

#1/bin/bash
i=1
for day in "Mon Tue Wed Thu Fri"
do
echo "Weekday $((i++)) : $day"
done

While Statement

#1/bin/bash

COUNTER=0

while [$COUNTER -It 10 |;

do
echo The counter is $COUNTER
COUNTER=COUNTER+1

done

Case (Normal Case)
#!/bin/bash

echo "What is your preferred programming / scripting language"
echo "1) bash"
echo "2) perl"
echo "3) phyton"
echo "4) c++"
echo "5) | do not know !"
read selection;
#simple case bash structure
case $selection in
1) echo "You selected bash";;
2) echo "You selected perl";;
3) echo "You selected phyton";;
4) echo "You selected c++";;

5) exit
esac

#!/bin/bash

echo "What is your preferred programming / scripting language”
echo "a) bash"

echo "b) perl"

echo "c) phyton"

echo "d) c++"

echo "e) | do not know !"

read selection;

#simple case bash structure

case $selection in
a | A) echo "You selected bash";;

b | B) echo "You selected perl";;
c | C) echo "You selected phyton;;
d | D) echo "You selected c++";;

e | E) exit

esac

Case example (repeat until user exits (using until))
#!/bin/bash

Selection =
until ["$selection" ="0"J;
do echo ™
echo "PROGRAM MENU"
echo "1 - display free disk space"
echo "2 - display free memory"
echo™
echo "0 - exit program"
echo™
echo -n "Enter selection: "
read selection
echo ™
case $selection in
1)dfy;
2)free;;
0) exit ;;
*) echo "Please enter 1, 2, or 0"
esac
done

