
Linux/UNIX File Access Control

CYBR371: System and Network Security, (2024/T1)

Arman Khouzani (course coordinator), Mohammad Nekooei
Slides modified from “Masood Mansoori”
06 March, 2024

Victoria University of Wellington – School of Engineering and Computer Science



Users and Groups

The fundamental concepts that Linux uses for managing
access to system resources and files are “users” and “goups”.

1

https://blog.devops.dev/unlocking-the-secrets-of-user-and-group-management-in-linux-ab49e3acaf3c


Users

A user in Linux refers to an entity that interacts with the
system.

Each user has a unique username and a user ID (UID)
associated with them.

- Users can own files and directories, and they can also
execute processes on the system.

- Linux systems come with a few built-in users such as
root, who has administrative privileges, and regular user
accounts created during the system installation process.

2



Groups

Groups in Linux are collections of user accounts.

Users can belong to one or more groups.

Each group has a unique group name and a group ID (GID).

- Groups are primarily used to simplify the management of
permissions.

- When a file or directory is created, it is assigned both a
user owner and a group owner.

3



Users and Groups: Common commands for managing

adduser/useradd: add new user accounts to the system.
passwd: set or change passwords for user accounts.
userdel/deluser: delete user accounts from the system.

addgroup/groupadd: add new groups to the system.
groupdel/delgroup: delete groups from the system.

usermod: modify user account settings such as group
membership.

chown: change the owner of a file or directory.
chgrp: change the group ownership of a file or directory.

4



File and Directory Permissions

Three sections, based on the user(s) that receive the
permission:

- User permissions: owner
- Group permissions: group owner
- Other permissions: everyone on system

Three regular permissions may be assigned to each user:

- Read
- Write
- Execute

5



users, groups, processes

In Linux, each process runs with a set of user and group IDs:

• Real User ID (RUID): the user ID of the user who executed
the process or, in the case of a process started by another
process (e.g., a shell starting a command), the user who
initiated the chain of processes.
- The RUID remains constant throughout the lifetime of the
process unless the process changes it explicitly.

• Effective User ID (EUID): user ID that the process is acting
on behalf of. Generally, the same as RUID, however:
- EUID can change during the execution of a process,
typically triggered by certain system calls or by executing
a setuid or setgid program.

6



Order of Checking Permissions

When you are interacting with a file in Linux:

• It first checks to see whether you are the user that owns
the file. If so, then you are granted the user owner’s
permissions, and no further checks will be completed.

• If you are not the user that owns the file, next it checks
whether you belong to the group that matches the group
owner of the file. If so, then you’re covered under the
group owner field of permissions, and no further checks
will be made.

• “Others” permissions are applied when you are neither
the user owner nor in the group that owns the file.

7



Interpreting Permissions

Permission Definition for Files Definition for Directories

Read open and read the contents of
a file

list the contents of the direc-
tory (if also given execute per-
mission)

Write open, read, and edit the con-
tents of a file

add or remove files to and from
the directory (if also been given
execute permission)

Execute execute the file in memory (if
it is a program file or script)

enter the directory and work
with directory contents

Linux Permissions

8



Changing Permissions

chmod: change mode (permissions) of files or directories

- Two arguments at minimum
• criteria used to change permissions
• filenames to change

- Permissions are stored in a file’s or a directory’s inode
Category
u (owner user)
g (owner group)
o (other)
a (all categories)

Operation
+ (adds a permission)
- (removes a permission)
= (makes a permission equal to)

Permission
r (read)
w (write)
x (execute)

9



Changing Permissions: Numeric/Octal representation

Numeric/Octal representation of the mode.

10



Special Permissions

Three more optional special permissions for files and
directories:

- SUID (Set User ID)
- SGID (Set Group ID)
- Sticky bit

11



Special Permissions: SUID

SUID
▶ If set on a file, the user who executes the file becomes
the owner of the file during execution.

• e.g., ping command

▶ No functionality when set on a directory.
▶ Only applicable to binary compiled programs

• Cannot be used on shell scripts.

12



Special Permissions: SGID

SGID
▶ Applicable to files and directories.
▶ If set on a file, user who executes the file becomes
member of the file’s group during execution, regardless
of whether the user who runs it is in that group or not.
▶ On directories, causes files created within the
directory to have the same group as the directory, useful
for directories shared by multiple users with different
default groups.

13



Special Permissions: Sticky bit

Sticky bit
- Previously used to lock files in memory.
- Currently only applicable to directories.
▶ Ensures that a user can only delete his/her own files
when given write permissions in a directory.

14



Special Permissions

Properties:

- Mask the execute permissions when displayed by the ls
-l command.

- May be set even if file or directory does not have execute
permission.
• the corresponding letter in the mode will be capitalised.

- Add special permissions via chmod command.
• can add an extra digit at the front of the permissions
argument.

15



Special Permissions

Representing special permissions in the mode.

16



Special Permissions

Representing special permissions in the absence of the execute
permissions.

17



Special Permissions

Numeric representation of regular and special permissions.

18



Special Permissions: Examples

19



Drawbacks & Limitations of 9 bit permission

The price of playing tricks with this permission model:

• Setuid-root - Allows even ordinary users to perform
administrative tasks.
- Buggy application easily compromises system.
- Increase complexity of system configurations.
- No fine grained control access to non-class users.

20



Drawbacks & Limitations of 9 bit permission

Extended ACLs provides:

- Beyond simple user/group/other ownership.
- Contains any number of named user & groups.
- Contains mask entry.

Utilities/Library functions:
getfacl: check the current state of ACL on file/directory.

getfacl test-dir

setfacl: modify/add ACL to additional user or group.
setfacl -m user:stu1:rwx, group:cybr371:rwx test-file

21



Access Control Lists (ACLs) in UNIX

Modern UNIX systems support ACLs:

• FreeBSD, OpenBSD, Linux, Solaris

setfacl command assigns a list of UNIX user IDs and groups.
Any number of users and groups can be associated with a file.

Read, write, execute protection bits.

A file does not need to have an ACL.

Includes an additional protection bit that indicates whether
the file has an extended ACL.

When a process requests access to a file system object:

• Step 1 selects the most appropriate ACL.
• Step 2 checks if the matching entry contains sufficient
permissions. 22



More details on Extended ACLs

Example of an ACL Entry in Linux system:
user::rw-
group::rw-
other::—

Extended ACLs: contain entries for additional users/groups.
What if permissions are not contained within owning group?

- Solution: Solved by virtue of Mask entry.

Mask Entry: maximum access rights that can be granted for
users and groups. Mask applicable on:

- Named user - Named group - Owning group

Default ACL: Defined for a directory, the objects in directory
inherits it.

23



Rules

user::rw-
group::r–
other::—
user:jane:rw-
group:masood_grp:rwx
mask::rwx

default:user::rwx
default:group::r-x
default:group:masood_grp:r-x
default:mask::r-x
default:other::—

24



Rules

ACLs can be divided into two classes:

• A minimum ACL: corresponds to the conventional permission bits for
files and directories.

• An extended ACL: It must contain a mask entry and may contain
several entries for the named user and named group types.

25



Rules

• The permissions denoted in the entries owner and other
are always effective.

• Except for the mask entry, all others (named user, owning
group, named group) can be either effective or masked.

• If permissions exist in one of the above as well as in the
mask, they are effective. Permissions contained only in
the mask or only in the actual entry are not effective.

• The mask entry is to reduce all entries in the group class
to a common denominator. It denotes the maximum
effective access permissions for all entries in the group
class.

26



27



1. Can user masood view the content of the directory
/home/masood/mydir?

2. Can user masood view and write to the content of the file
/home/mydirs/myfile?

3. Can user ben view the content of the directory
/home/masood/mydir?

4. Can user ben view the content of the file
/home/masood/mydir/myfile?

5. Can user mary view the content of the directory
/home/masood/mydirs?

6. Can user mary view the content of the file
/home/masood/mydir/myfile?

28



Previously we saw Ben could not write to the file
/home/masood/mydir/myfile. Can we allow him now?

29



Can nathan read the file /home/masood/mydir/myfile?

Can he write to it?

How can we allow nathan to write to the file
/home/masood/mydir/myfile without adding him to staff or
students group?

30



Can we make all students be able to write to the file
/home/masood/mydir/myfile? (including mary)

31



Can we make all students be able to write to the file
/home/masood/mydir/myfile, BUT NOT mary?

32



How does the mask change if we give mary read, write and execute
permissions on the file /home/masood/mydir/myfile?

33



Can we temporarily set read-only for everyone (named users and
groups only) without changing the acls and permissions one by one?

34



Question

What is a umask and what’s its relation to permissions?

35



umask

Used to set default permissions for a user (when they create a
file).

The typical default value for umask is 022 (octal)
How is it calculated?

Binary of (R = P & (!M))

- The resulting permission mode (R) is a result of a binary
logical AND operation between the negation of the mask
(M), and the requested permission mode (P).

36



umask

37



umask: Example 1

Example: 027
Directory:

111111111 (777) &
111101000 (!027) =
111101000 = 750 = rwxr-x—
File: 666
110110110 (666) &
111101000 (!027) =
110100000 = 640 = rw-r–—

38



umask: Example 2

Example: 543
Directory:

111111111 (777) &
010011100 (!543) =
010011100 = 234 = -w--wxr–
File: 666
110110110 (666) &
010011100 (!534) =
010010100 = 224 = -w--w-r–

39



Additional Reading

Please refer to the reading notes for more information on
Linux permission and ACLs

Special Permissions:

• https://www.linuxnix.com/suid-set-suid-linuxunix/

40

https://www.linuxnix.com/suid-set-suid-linuxunix/


Next: TCP/IP

40


