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What is a Shell?

In computing, a shell is a computer program that ex-
poses an operating system’s services to a human user
or other programs.

Operating system shells use either a command-line in-
terface (CLI) or graphical user interface (GUI).

It is named a shell because it is the outermost layer
around the operating system.

–Wikipedia

The first Unix shell was written by Ken Thompson at Bell Labs
and distributed with Versions 1 to 6 of Unix, from 1971 to 1975.
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UNIX Shells

• csh: C-Shell (C-like Syntax, Bill Joy of UC Berkeley, 1978)
• sh: Bourne Shell (Steven Bourne of AT&T, 1979)
• ksh: Korn-Shell (Bourne+some C-shell, David Korn of
AT&T, 1983)

• tcsh: TENEX C-Shell (C-Shell with filename and command
completion, 1983).

• bash: Bourne Again Shell (GNU Improved Bourne Shell,
1989)
- the default interactive shell for users on most Linux
systems.

• Zsh: Z shell (1990) an extended Bourne shell including
some features of bash, ksh, and tcsh.
- it is now the default shell in Kali Linux and macOS.
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UNIX Shells

To check your current shell:

- $ echo $SHELL (SHELL is a pre-defined variable)

To switch shell:

- $ exec shellname (e.g., $ exec bash)
- or simply enter the shellname, (e.g. $ bash).
- $ exit returns you back to previous shell.
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Shell Scripts
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Shell Scripts

Shell Script: a text file containing a sequence of commands
and constructs for a shell in a Unix-based OS to execute.

- may contain any command that can be entered on
command line.

Hashpling: the first line in a shell script.

- specifies which shell to be used to interpret the shell
script commands.

#!/bin/bash
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Shell Scripts: How to execute

Executing a shell script with read permission:

- start another shell, specify the script as an argument.

Executing a shell script with read+execute permission:

- execute like any executable programme.
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Shell Scripting

• Start nano scriptfilename.sh with the line:
#!/bin/sh

- All other lines starting with # are comments.

• Tell Unix that the script file is executable:
$ chmod u+x scriptfilename.sh

• Execute the shell-script:
$ ./scriptfilename.sh
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Example

[root@server1 ~] cat myscript.sh
#!/bin/bash
# this is a comment
date
who
ls -F /
[root@server1 ~] bash myscript.sh
Fri Aug 20 11:36:18 EDT 2010
user1 tty1 2023-02-20 07:47 (:0)
root pts/0 2023-02-20 11:36 (10.0.1.2)
bin/ dev/ home/ media/ proc/ sbin/ sys/ var/
boot/ etc/ lib/ mnt/ public/ selinux/ tmp/
data/ extras/ lost+found/ opt/ root/ srv/ usr/
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Escape Sequences

Character sequences having special meaning in the echo
command:

- prefixed by the \ character.
- must use the -e option in the echo command.
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Escape Sequences

Sequence Character printed

\a Alert (bell, the ASCII beep)
\b Backspace
\\ Single backslash
\c prevents a newline following the command
\f Formfeed
\n Newline (not at the end of command)
\r Return (Enter)
\t Tab
\v Vertical Tab
\??? The eight-bit character whose value is the octal (base-8) value ???

Common echo escape sequences.
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Quote Characters

There are three different quote characters with different
behaviour. These are:

• ” (double quote, weak quote): If a string is enclosed in ” ”
the references to variables (i.e $variable ) are replaced by
their values. Also back-quote and escape \characters are
treated specially.

• ' (single quote, strong quote): Everything inside single
quotes are taken literally, nothing is treated as special.

• ` (back quote): A string enclosed as such is treated as a
command and the shell attempts to execute it. If the
execution is successful the primary output from the
command replaces the string.
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Example

#!/bin/bash
echo ”cal 03 2023”
echo 'cal 03 2023'
echo `cal 03 2023`

echo ”Today is:” `date`
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My first shell script

$ vi myscript.sh
#!/bin/bash
# The first example of a shell script
directory=`pwd`
echo Hello World!
echo The date today is `date`
echo The current directory is $directory

$ chmod u+x myscript.sh
$ ./myscript.sh
Hello World!
The date today is Wed Mar 20 10:42:24 EST 2024
The current directory is /cybr371/arman
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Variables

Variables are symbolic names that represent values stored in
memory. Three different types of variables in shell:

• Global Variables: Environment and configuration
variables, capitalised, such as HOME, PATH, SHELL,
USERNAME, PWD. When you login, such global variables
are already defined, and can be referenced in your shell
scripts.

• Local Variables: Within a shell script, you can create as
many new variables as needed. Any variable created in
this manner remains in existence only within that shell.

• Special Variables: Reversed for OS, shell programming,
etc. such as positional parameters $0, $1 …
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A few global (environment) variables

SHELL Current shell
DISPLAY Used by X-Windows system to identify the display
HOME Fully qualified name of your login directory
PATH Search path for commands
MANPATH Search path for <man> pages
PS1, PS2 Primary and Secondary prompt strings
USER Your login name
TERM terminal type
PWD Current working directory
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Defining Local Variables

As in any other programming language, variables can be
defined and used in shell scripts.

Variables in Shell Scripts are not typed.

Examples:
a=1234 # a is NOT an integer, a string instead
b=$a+1 # will not perform arithmetic but will be the

string '1234+1'
b=`expr $a + 1` # will perform arithmetic so b is 1235

now. Note the spaces before and after +
# Available operations are: + - / * ** %
b=abcde # b is string
b='abcde' # same as above but much safer.

Note: There must be no spaces between the variable name, the
= operator, and the value you want to assign to the variable.
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Referencing variables: curly bracket

Having defined a variable, its contents can be referenced by
the $ symbol.
E.g. ${variable} or simply $variable.
When ambiguity exists $variable will not work. Use ${ }
the rigorous form to be on the safe side.

Example:
a='abc'
b=${a}def # this would not have worked without the { }

as it would try to access a variable named adef

tdate=`date`
echo ”today's date is: ”+$tdate

18



Using Variables in Scripts

#!/bin/bash

lines=`cat $1 | wc --lines`
characters=`cat $1 | wc --chars`

echo ”the number of lines in $1 is: $lines”
echo ”the number of characters in $1 is: $characters”
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Reading Standard Input

Shell scripts may need input from users.

- Input may be stored in a variable for later use.

read command takes user input from stdin and places it in a
variable. Variable name specified by an argument to the read
command.
#!/bin/bash

echo -e ”please enter a filename:\c”
read filename

echo -e ”please enter a destination directory:\c”
read directoryname

sudo cp $filename $directoryname
echo ”file copied successfully.”
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Example

#!/bin/bash
echo -e ”What is your name? -->\c”
read USERNAME
echo ”Hello $USERNAME”

[root@server1 ~] chmod a+x newscript.sh
[root@server1 ~] ./newscript.sh
What is your name? --> Fred
Hello Fred
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Positional Parameters

When a shell script is invoked with a set of command line
parameters each of these parameters are copied into special
variables that can be accessed:

• $0: This variable that contains the name of the script
• $1, $2, …, $n1: 1st , 2nd, 3rd command line parameter.
• $#: Number of command line parameters
• $$: process ID of the shell

Example: ./myscript one two buckle my shoe
During the execution of myscript variables $1, $2, $3, $4,
and $5 will contain one, two, buckle, my, shoe, respectively.
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Variables

$ vi myinputs.sh

#!/bin/sh
echo Total number of inputs: $#
echo First input: $1
echo Second input: $2

$ chmod u+x myinputs.sh
$ ./myinputs.sh CYBR 371 Arman
Total number of inputs: 3
First input: CYBR
Second input: 371
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Defining and Evaluating

• A shell variable take on the generalised form
variable=value (except in the C shell).
$ set x=37; echo $x
37
$ unset x; echo $x
x: Undefined variable.

• You can set a pathname or a command to a variable or
substitute to set the variable.
$ set mydir=`pwd`; echo $mydir

24



Arithmetic Operators

expr supports the following operators:

• arithmetic operators: +, -, *, /, %
• comparison operators: <, <=, ==, !=, >=, >
• boolean/logical operators: &, |
• parentheses: (, )
• precedence is the same as C, Java
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Arithmetic Operators

$ vi math.sh

#!/bin/sh

count=5
count=`expr $count + 1`
echo $count

$ chmod u+x math.sh
$ ./math.sh
6
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Decision Constructs

Most common type of construct used in shell scripts

Alter flow of a program

- Based on whether a command completed successfully
- Based on user input
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The if construct: syntax

if [this_is_true]
then

do_these_commands
elif [this_is_true]
then

do_these_commands
else

do_these_commands
fi

• elif (else if) and else statements are optional.
• there can be as many elif statements as you like!
• do_these_commands may consist of multiple commands.

- one per line.
- indented for readability.

• end of statement must be fi.
• the condition part may be command or test statement. 28



The if construct: test statement

test statement: used to test a condition.

• generates a True/False value.
• inside square brackets [ … ], or prefixed by the keyword
test.
- must have spaces after [ and before ].

special comparison operators: used to combine test
statements.

• -o (OR)
• -a (AND)
• ! (NOT)
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The if construct: Common test statements

[ A = B ] String A is equal to string B, equivalent to [ A == B ]
[ A != B ] String A is not equal to string B
[ -n A ] String A is not null, equivalent to [ A ]
[ -z A ] String A is null

[ A -eq B ] A is numerically equal to B
[ A -ne B ] A is numerically not equal to B
[ A -lt B ] A is numerically less than B
[ A -gt B ] A is numerically greater than B
[ A -le B ] A is numerically less than or equal to B
[ A -ge B ] A is numerically greater than or equal to B
[ -r A ] A is a file/directory that exists and has read permission
[ -w A ] A is a file/directory that exists and has write permission
[ -x A ] A is a file/directory that exists and has execute permission
[ -f A ] A is a file that exists.
[ -d A ] A is a directory that exists.
[ -e A ] A is a file/directory that exists.
[ -s A ] A is a file/directory that exists and has non-zero size. 30



The if construct: Example

myscript.sh
#!/bin/bash

echo -e ”Today's date is: \c”
date
echo –e ”\nThe people logged into the system include:”
who
echo –e ”\nWould you like to see the contents of /?(y/n)

-->\c”
read ANSWER
if [ $ANSWER = ”y” -o $ANSWER = ”Y” ]
then

echo –e ”\nThe contents of the / directory are:”
ls –F /

fi
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The if construct: Example

if date | grep ”Fri”
then

echo ”It's Friday!”
fi

if [ ”$1” == ”Monday” ]
then

echo ”The typed argument is Monday.”
elif[ ”$1” == ”Tuesday” ]
then

echo ”Typed argument is Tuesday.”
else

echo ”Typed argument is neither Monday nor Tuesday.”
fi

Note: = or == both work in test but == is better for readability.
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The if construct: Example

#!/bin/sh
if [ ”$#” -ne 2 ] then

echo ”$0 needs two parameters!”
echo ”You are inputting $# parameters.”

else
par1=$1
par2=$2

fi
echo ”$par1”
echo ”$par2”

#!/bin/bash
inputt=$1
[ -d ”$inputt” ] && echo ”directory”
[ -f ”$inputt” ] && echo ”file”
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The case construct

Compares the value of a variable with several different
patterns of text or numbers.
case $variable-name in

pattern1)
command1 ...
commandN
;;

pattern2)
command1 ...
commandN
;;

patternN)
command1 ...
commandN
;;

*)
Default condition to be executed
;;

esac
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The case construct: Example
#!/bin/bash
echo –e ”What would you like to see? Today's date (d), Currently

logged in users (u), The contents of the / directory (r).
Enter your choice(d/u/r)-->\c”

read ANSWER
if [ $ANSWER = ”d” –o $ANSWER = ”D” ]
then

echo -e ”Today's date is: \c”
date

elif [ $ANSWER = ”u” –o $ANSWER = ”U” ]
then

echo –e ”\nThe people logged into the system are:”
who

elif [ $ANSWER = ”r” –o $ANSWER = ”R” ]
then

echo –e ”\nThe contents of the / directory are:”
ls –F /

else
echo –e ”Invalid choice! \a”

fi
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The case construct: Example

#!/bin/bash
echo –e ”What would you like to see? Today's date (d), Currently

logged in users (u), The contents of the / directory (r).
Enter your choice(d/u/r)-->\c”

read ANSWER
case $ANSWER in

d | D )
echo -e ”\nToday's date is: \c”
date;;

u | U )
echo –e ”\nThe people logged in system are:”
who;;

r | R )
echo –e ”\nThe contents of / directory are:”
ls –F /;;

*)
echo –e ”Invalid choice! \a”;;

esac
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The && and || constructs

Time-saving shortcut constructs.

- When only one decision needs to be made during
execution.

Syntax:

- command && command
- command || command

&&: Second command executed only if the first completes
successfully.

||: Second command executed only if the first fails.

37



The && and || constructs: Examples

#!/bin/bash
if mkdir /etc/sample
then

cp /etc/hosts /etc/sample
echo ”The hosts file was successfully copied to /etc/sample”

else
echo ”The /etc/sample directory could not be created.”

fi

#!/bin/bash
mkdir /etc/sample && cp /etc/hosts /etc/sample

#!/bin/bash
mkdir /etc/sample || echo ”Could not create /etc/sample”
cp /etc/hosts /etc/sample || echo ”Could not copy /etc/hosts”
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Loop Constructs: The for Constructs

Can be used to process a list of objects.
for var_name in string1 string2 ...
do
these_commands
done

During execution sets var_name to a string name, and
executes the commands between do and done for that string.
Repeats for all the strings.
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The for Constructs: Examples

#!/bin/bash
for NAME in bob sue mary jane frank lisa jason
do

mail –s ”Your new project schedule” $NAME < newschedule
echo ”$NAME was emailed successfully”

done

[root@server1 ~] chmod a+x emailusers.sh
[root@server1 ~] ./emailusers.sh
bob was emailed successfully
sue was emailed successfully
mary was emailed successfully
jane was emailed successfully
frank was emailed successfully
lisa was emailed successfully
jason was emailed successfully
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The for Constructs: Examples
echo –e ”What directory has the files that you would like to

rename?-->\c”
read DIR
for NAME in $DIR/*
do

mv $NAME $NAME.txt
done

for i in $(seq 1 10);
do

echo ” $i times 5 is $(( i * 5 )) ”
done

sum=0
for i in $(seq 1 $1);
do

sum=`expr $sum + $i`
# or equivalently ((sum=sum+i)) or sum=$(expr $sum + $i)

done
echo ”The sum of numbers from 1 through $1 is ${sum}!”
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The while construct: syntax

while this_returns_true
do

these_commands
done

Example:
#!/bin/sh
i=1
sum=0
while [ $i -le $1 ]
do

sum=`expr $sum + $i`
i=`expr $i + 1`

done
echo ”The sum of numbers from 1 through $1 is ${sum}!”
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The while construct: Examples

#!/usr/bin/bash
file=temp.txt
while read -r line;
do

echo $line
done < ”$file”

#! /bin/bash
file=temp.txt
echo ”Enter the content into the file $file”
while read line
do

echo $line >> $file
done
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Assigning outputs to variables

#!/bin/bash
echo -e ”Enter a folder's name:\c”
read foldername

commandoutput=$(ls -lh $foldername)

echo $commandoutput
echo -e ”\n\n\n”
echo ”$commandoutput”

• You can use pipe | to redirect stdout from one command
to the stdin of another.

• You can create your own variables and export them so
that they are available to programmes started by the
shell.
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Extra Reading

Great references (e-book available through VUW library):

• CompTIA Linux+ Certification All-in-One Exam Guide,
Jordan, Ted.; Strohmayer, Sandor.; 2023

• https://tldp.org/LDP/Bash-Beginners-Guide/html/
• https://www.freecodecamp.org/news/bash-scripting-
tutorial-linux-shell-script-and-command-line-for-
beginners/

• https://www.geeksforgeeks.org/bash-scripting-
introduction-to-bash-and-bash-scripting/

• https://linuxconfig.org/bash-scripting-tutorial
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Extra References (all available through VUW library)
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Next: Overview of TCP/IP
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