
Shell Scripting

CYBR371: System and Network Security, (2024/T1)

Arman Khouzani, Mohammad Nekooei
Slides modified from “Masood Mansoori”
11 March, 2024

Victoria University of Wellington – School of Engineering and Computer Science

Shell

1

What is a Shell?

In computing, a shell is a computer program that ex-
poses an operating system’s services to a human user
or other programs.

Operating system shells use either a command-line in-
terface (CLI) or graphical user interface (GUI).

It is named a shell because it is the outermost layer
around the operating system.

–Wikipedia

The first Unix shell was written by Ken Thompson at Bell Labs
and distributed with Versions 1 to 6 of Unix, from 1971 to 1975.

2

UNIX Shells

• csh: C-Shell (C-like Syntax, Bill Joy of UC Berkeley, 1978)
• sh: Bourne Shell (Steven Bourne of AT&T, 1979)
• ksh: Korn-Shell (Bourne+some C-shell, David Korn of
AT&T, 1983)

• tcsh: TENEX C-Shell (C-Shell with filename and command
completion, 1983).

• bash: Bourne Again Shell (GNU Improved Bourne Shell,
1989)
- the default interactive shell for users on most Linux
systems.

• Zsh: Z shell (1990) an extended Bourne shell including
some features of bash, ksh, and tcsh.
- it is now the default shell in Kali Linux and macOS.

3

UNIX Shells

To check your current shell:

- $ echo $SHELL (SHELL is a pre-defined variable)

To switch shell:

- $ exec shellname (e.g., $ exec bash)
- or simply enter the shellname, (e.g. $ bash).
- $ exit returns you back to previous shell.

4

Shell Scripts

5

Shell Scripts

Shell Script: a text file containing a sequence of commands
and constructs for a shell in a Unix-based OS to execute.

- may contain any command that can be entered on
command line.

Hashpling: the first line in a shell script.

- specifies which shell to be used to interpret the shell
script commands.

#!/bin/bash

6

Shell Scripts: How to execute

Executing a shell script with read permission:

- start another shell, specify the script as an argument.

Executing a shell script with read+execute permission:

- execute like any executable programme.

7

Shell Scripting

• Start nano scriptfilename.sh with the line:
#!/bin/sh

- All other lines starting with # are comments.

• Tell Unix that the script file is executable:
$ chmod u+x scriptfilename.sh

• Execute the shell-script:
$./scriptfilename.sh

8

Example

[root@server1 ~] cat myscript.sh
#!/bin/bash
this is a comment
date
who
ls -F /
[root@server1 ~] bash myscript.sh
Fri Aug 20 11:36:18 EDT 2010
user1 tty1 2023-02-20 07:47 (:0)
root pts/0 2023-02-20 11:36 (10.0.1.2)
bin/ dev/ home/ media/ proc/ sbin/ sys/ var/
boot/ etc/ lib/ mnt/ public/ selinux/ tmp/
data/ extras/ lost+found/ opt/ root/ srv/ usr/

9

Escape Sequences

Character sequences having special meaning in the echo
command:

- prefixed by the \ character.
- must use the -e option in the echo command.

10

Escape Sequences

Sequence Character printed

\a Alert (bell, the ASCII beep)
\b Backspace
\\ Single backslash
\c prevents a newline following the command
\f Formfeed
\n Newline (not at the end of command)
\r Return (Enter)
\t Tab
\v Vertical Tab
\??? The eight-bit character whose value is the octal (base-8) value ???

Common echo escape sequences.

11

Quote Characters

There are three different quote characters with different
behaviour. These are:

• ” (double quote, weak quote): If a string is enclosed in ” ”
the references to variables (i.e $variable) are replaced by
their values. Also back-quote and escape \characters are
treated specially.

• ' (single quote, strong quote): Everything inside single
quotes are taken literally, nothing is treated as special.

• ` (back quote): A string enclosed as such is treated as a
command and the shell attempts to execute it. If the
execution is successful the primary output from the
command replaces the string.

12

Example

#!/bin/bash
echo ”cal 03 2023”
echo 'cal 03 2023'
echo `cal 03 2023`

echo ”Today is:” `date`

13

My first shell script

$ vi myscript.sh
#!/bin/bash
The first example of a shell script
directory=`pwd`
echo Hello World!
echo The date today is `date`
echo The current directory is $directory

$ chmod u+x myscript.sh
$./myscript.sh
Hello World!
The date today is Wed Mar 20 10:42:24 EST 2024
The current directory is /cybr371/arman

14

Variables

Variables are symbolic names that represent values stored in
memory. Three different types of variables in shell:

• Global Variables: Environment and configuration
variables, capitalised, such as HOME, PATH, SHELL,
USERNAME, PWD. When you login, such global variables
are already defined, and can be referenced in your shell
scripts.

• Local Variables: Within a shell script, you can create as
many new variables as needed. Any variable created in
this manner remains in existence only within that shell.

• Special Variables: Reversed for OS, shell programming,
etc. such as positional parameters $0, $1 …

15

A few global (environment) variables

SHELL Current shell
DISPLAY Used by X-Windows system to identify the display
HOME Fully qualified name of your login directory
PATH Search path for commands
MANPATH Search path for <man> pages
PS1, PS2 Primary and Secondary prompt strings
USER Your login name
TERM terminal type
PWD Current working directory

16

Defining Local Variables

As in any other programming language, variables can be
defined and used in shell scripts.

Variables in Shell Scripts are not typed.

Examples:
a=1234 # a is NOT an integer, a string instead
b=$a+1 # will not perform arithmetic but will be the

string '1234+1'
b=`expr $a + 1` # will perform arithmetic so b is 1235

now. Note the spaces before and after +
Available operations are: + - / * ** %
b=abcde # b is string
b='abcde' # same as above but much safer.

Note: There must be no spaces between the variable name, the
= operator, and the value you want to assign to the variable.

17

Referencing variables: curly bracket

Having defined a variable, its contents can be referenced by
the $ symbol.
E.g. ${variable} or simply $variable.
When ambiguity exists $variable will not work. Use ${ }
the rigorous form to be on the safe side.

Example:
a='abc'
b=${a}def # this would not have worked without the { }

as it would try to access a variable named adef

tdate=`date`
echo ”today's date is: ”+$tdate

18

Using Variables in Scripts

#!/bin/bash

lines=`cat $1 | wc --lines`
characters=`cat $1 | wc --chars`

echo ”the number of lines in $1 is: $lines”
echo ”the number of characters in $1 is: $characters”

19

Reading Standard Input

Shell scripts may need input from users.

- Input may be stored in a variable for later use.

read command takes user input from stdin and places it in a
variable. Variable name specified by an argument to the read
command.
#!/bin/bash

echo -e ”please enter a filename:\c”
read filename

echo -e ”please enter a destination directory:\c”
read directoryname

sudo cp $filename $directoryname
echo ”file copied successfully.”

20

Example

#!/bin/bash
echo -e ”What is your name? -->\c”
read USERNAME
echo ”Hello $USERNAME”

[root@server1 ~] chmod a+x newscript.sh
[root@server1 ~] ./newscript.sh
What is your name? --> Fred
Hello Fred

21

Positional Parameters

When a shell script is invoked with a set of command line
parameters each of these parameters are copied into special
variables that can be accessed:

• $0: This variable that contains the name of the script
• $1, $2, …, $n1: 1st , 2nd, 3rd command line parameter.
• $#: Number of command line parameters
• $$: process ID of the shell

Example: ./myscript one two buckle my shoe
During the execution of myscript variables $1, $2, $3, $4,
and $5 will contain one, two, buckle, my, shoe, respectively.

22

Variables

$ vi myinputs.sh

#!/bin/sh
echo Total number of inputs: $#
echo First input: $1
echo Second input: $2

$ chmod u+x myinputs.sh
$./myinputs.sh CYBR 371 Arman
Total number of inputs: 3
First input: CYBR
Second input: 371

23

Defining and Evaluating

• A shell variable take on the generalised form
variable=value (except in the C shell).
$ set x=37; echo $x
37
$ unset x; echo $x
x: Undefined variable.

• You can set a pathname or a command to a variable or
substitute to set the variable.
$ set mydir=`pwd`; echo $mydir

24

Arithmetic Operators

expr supports the following operators:

• arithmetic operators: +, -, *, /, %
• comparison operators: <, <=, ==, !=, >=, >
• boolean/logical operators: &, |
• parentheses: (,)
• precedence is the same as C, Java

25

Arithmetic Operators

$ vi math.sh

#!/bin/sh

count=5
count=`expr $count + 1`
echo $count

$ chmod u+x math.sh
$./math.sh
6

26

Decision Constructs

Most common type of construct used in shell scripts

Alter flow of a program

- Based on whether a command completed successfully
- Based on user input

27

The if construct: syntax

if [this_is_true]
then

do_these_commands
elif [this_is_true]
then

do_these_commands
else

do_these_commands
fi

• elif (else if) and else statements are optional.
• there can be as many elif statements as you like!
• do_these_commands may consist of multiple commands.

- one per line.
- indented for readability.

• end of statement must be fi.
• the condition part may be command or test statement. 28

The if construct: test statement

test statement: used to test a condition.

• generates a True/False value.
• inside square brackets […], or prefixed by the keyword
test.
- must have spaces after [and before].

special comparison operators: used to combine test
statements.

• -o (OR)
• -a (AND)
• ! (NOT)

29

The if construct: Common test statements

[A = B] String A is equal to string B, equivalent to [A == B]
[A != B] String A is not equal to string B
[-n A] String A is not null, equivalent to [A]
[-z A] String A is null

[A -eq B] A is numerically equal to B
[A -ne B] A is numerically not equal to B
[A -lt B] A is numerically less than B
[A -gt B] A is numerically greater than B
[A -le B] A is numerically less than or equal to B
[A -ge B] A is numerically greater than or equal to B
[-r A] A is a file/directory that exists and has read permission
[-w A] A is a file/directory that exists and has write permission
[-x A] A is a file/directory that exists and has execute permission
[-f A] A is a file that exists.
[-d A] A is a directory that exists.
[-e A] A is a file/directory that exists.
[-s A] A is a file/directory that exists and has non-zero size. 30

The if construct: Example

myscript.sh
#!/bin/bash

echo -e ”Today's date is: \c”
date
echo –e ”\nThe people logged into the system include:”
who
echo –e ”\nWould you like to see the contents of /?(y/n)

-->\c”
read ANSWER
if [$ANSWER = ”y” -o $ANSWER = ”Y”]
then

echo –e ”\nThe contents of the / directory are:”
ls –F /

fi

31

The if construct: Example

if date | grep ”Fri”
then

echo ”It's Friday!”
fi

if [”$1” == ”Monday”]
then

echo ”The typed argument is Monday.”
elif[”$1” == ”Tuesday”]
then

echo ”Typed argument is Tuesday.”
else

echo ”Typed argument is neither Monday nor Tuesday.”
fi

Note: = or == both work in test but == is better for readability.

32

The if construct: Example

#!/bin/sh
if [”$#” -ne 2] then

echo ”$0 needs two parameters!”
echo ”You are inputting $# parameters.”

else
par1=$1
par2=$2

fi
echo ”$par1”
echo ”$par2”

#!/bin/bash
inputt=$1
[-d ”$inputt”] && echo ”directory”
[-f ”$inputt”] && echo ”file”

33

The case construct

Compares the value of a variable with several different
patterns of text or numbers.
case $variable-name in

pattern1)
command1 ...
commandN
;;

pattern2)
command1 ...
commandN
;;

patternN)
command1 ...
commandN
;;

*)
Default condition to be executed
;;

esac
34

The case construct: Example
#!/bin/bash
echo –e ”What would you like to see? Today's date (d), Currently

logged in users (u), The contents of the / directory (r).
Enter your choice(d/u/r)-->\c”

read ANSWER
if [$ANSWER = ”d” –o $ANSWER = ”D”]
then

echo -e ”Today's date is: \c”
date

elif [$ANSWER = ”u” –o $ANSWER = ”U”]
then

echo –e ”\nThe people logged into the system are:”
who

elif [$ANSWER = ”r” –o $ANSWER = ”R”]
then

echo –e ”\nThe contents of the / directory are:”
ls –F /

else
echo –e ”Invalid choice! \a”

fi
35

The case construct: Example

#!/bin/bash
echo –e ”What would you like to see? Today's date (d), Currently

logged in users (u), The contents of the / directory (r).
Enter your choice(d/u/r)-->\c”

read ANSWER
case $ANSWER in

d | D)
echo -e ”\nToday's date is: \c”
date;;

u | U)
echo –e ”\nThe people logged in system are:”
who;;

r | R)
echo –e ”\nThe contents of / directory are:”
ls –F /;;

*)
echo –e ”Invalid choice! \a”;;

esac

36

The && and || constructs

Time-saving shortcut constructs.

- When only one decision needs to be made during
execution.

Syntax:

- command && command
- command || command

&&: Second command executed only if the first completes
successfully.

||: Second command executed only if the first fails.

37

The && and || constructs: Examples

#!/bin/bash
if mkdir /etc/sample
then

cp /etc/hosts /etc/sample
echo ”The hosts file was successfully copied to /etc/sample”

else
echo ”The /etc/sample directory could not be created.”

fi

#!/bin/bash
mkdir /etc/sample && cp /etc/hosts /etc/sample

#!/bin/bash
mkdir /etc/sample || echo ”Could not create /etc/sample”
cp /etc/hosts /etc/sample || echo ”Could not copy /etc/hosts”

38

Loop Constructs: The for Constructs

Can be used to process a list of objects.
for var_name in string1 string2 ...
do
these_commands
done

During execution sets var_name to a string name, and
executes the commands between do and done for that string.
Repeats for all the strings.

39

The for Constructs: Examples

#!/bin/bash
for NAME in bob sue mary jane frank lisa jason
do

mail –s ”Your new project schedule” $NAME < newschedule
echo ”$NAME was emailed successfully”

done

[root@server1 ~] chmod a+x emailusers.sh
[root@server1 ~] ./emailusers.sh
bob was emailed successfully
sue was emailed successfully
mary was emailed successfully
jane was emailed successfully
frank was emailed successfully
lisa was emailed successfully
jason was emailed successfully

40

The for Constructs: Examples
echo –e ”What directory has the files that you would like to

rename?-->\c”
read DIR
for NAME in $DIR/*
do

mv $NAME $NAME.txt
done

for i in $(seq 1 10);
do

echo ” $i times 5 is $((i * 5)) ”
done

sum=0
for i in $(seq 1 $1);
do

sum=`expr $sum + $i`
or equivalently ((sum=sum+i)) or sum=$(expr $sum + $i)

done
echo ”The sum of numbers from 1 through $1 is ${sum}!”

41

The while construct: syntax

while this_returns_true
do

these_commands
done

Example:
#!/bin/sh
i=1
sum=0
while [$i -le $1]
do

sum=`expr $sum + $i`
i=`expr $i + 1`

done
echo ”The sum of numbers from 1 through $1 is ${sum}!”

42

The while construct: Examples

#!/usr/bin/bash
file=temp.txt
while read -r line;
do

echo $line
done < ”$file”

#! /bin/bash
file=temp.txt
echo ”Enter the content into the file $file”
while read line
do

echo $line >> $file
done

43

Assigning outputs to variables

#!/bin/bash
echo -e ”Enter a folder's name:\c”
read foldername

commandoutput=$(ls -lh $foldername)

echo $commandoutput
echo -e ”\n\n\n”
echo ”$commandoutput”

• You can use pipe | to redirect stdout from one command
to the stdin of another.

• You can create your own variables and export them so
that they are available to programmes started by the
shell.

44

Extra Reading

Great references (e-book available through VUW library):

• CompTIA Linux+ Certification All-in-One Exam Guide,
Jordan, Ted.; Strohmayer, Sandor.; 2023

• https://tldp.org/LDP/Bash-Beginners-Guide/html/
• https://www.freecodecamp.org/news/bash-scripting-
tutorial-linux-shell-script-and-command-line-for-
beginners/

• https://www.geeksforgeeks.org/bash-scripting-
introduction-to-bash-and-bash-scripting/

• https://linuxconfig.org/bash-scripting-tutorial

45

https://tldp.org/LDP/Bash-Beginners-Guide/html/
https://www.freecodecamp.org/news/bash-scripting-tutorial-linux-shell-script-and-command-line-for-beginners/
https://www.freecodecamp.org/news/bash-scripting-tutorial-linux-shell-script-and-command-line-for-beginners/
https://www.freecodecamp.org/news/bash-scripting-tutorial-linux-shell-script-and-command-line-for-beginners/
https://www.geeksforgeeks.org/bash-scripting-introduction-to-bash-and-bash-scripting/
https://www.geeksforgeeks.org/bash-scripting-introduction-to-bash-and-bash-scripting/
https://linuxconfig.org/bash-scripting-tutorial

Extra References (all available through VUW library)

46

Next: Overview of TCP/IP

46

	Shell
	Shell Scripts

