
TCP/IP Overview

CYBR371: System and Network Security, (2024/T1)

Arman Khouzani, Mohammad Nekooei
Slides modified from “Masood Mansoori”
13 March, 2024

Victoria University of Wellington – School of Engineering and Computer Science

TCP/IP Basics

1

How Internet works

Protocol: Agreement on how to communicate.

Internet is based on the TCP/IP protocol.

Transmission Control Protocol / Internet Protocol (TCP/IP) is a
suite of many protocols for transmitting information on a
network.

- Often referred to as a “protocol stack”.

2

OSI and TCP/IP Models

OSI reference model: divides the communication functions
used by two hosts into seven separate layers.

TCP/IP has its own stack of protocols.

OSI Layers
Application
Presentation
Session
Transport
Network
Data Link
Physical

TCP/IP Layers

Application

Transport
Internet

Network Interface

Note: Direct or strict comparisons of the OSI and TCP/IP models should be avoided,

because the layering in TCP/IP is not a principal design criterion. 3

TCP/IP Protocols

TCP/IP layers TCP/IP Protocols

Application Specific Semantics Application HTTP, DNS, BGP,
NTP, SMTP, IMAP,
FTP, NFS, SNMP

E2E communication between
processes; Adds ports/reliabil-
ity

Transport TCP, UDP

Adds global addresses;
Requires routing

Network IP, ICMP

Adds framing & destination;
Still assumes shared link.
Broadcasts on shared link

Network Interface Ethernet, 802.11
(wifi), High-Level
Data Link Control
(HDLC), Asyn-
chronous Transfer
Mode (ATM), PPP

4

TCP / IP Network

• THE NETWORK IS DUMB.
• End-hosts are the periphery (users, devices).
• Routers and switches are Intermediary devices that:

- Route (figure out where to forward).
- Forward (actually send).

Principles of IP:

• The routers have no knowledge of ongoing connections
through them.

• They do “destination-based” routing and forwarding.
- Given the destination IP address in the packet, send it to
the “next hop” that is best suited to help ultimately get
the packet there.

5

Types of Addresses in Internet

• Media Access Control (MAC) addresses in the network
access layer.
- Associated with network interface card (NIC).
- 48 bits or 64 bits.

• IP addresses for the network layer.
- 32 bits for IPv4, and 128 bits for IPv6.
- e.g., 128.3.23.3

• IP addresses + ports for the transport layer.
- e.g., 128.3.23.3:80

• Domain names for the application/human layer.
- e.g., ecs.wgtn.ac.nz

6

Routing and Translation of Addresses

Translation between IP addresses and MAC addresses.

- Address Resolution Protocol (ARP) for IPv4.
- Neighbour Discovery Protocol (NDP) for IPv6.

Routing with IP addresses

- TCP, UDP, IP for routing packets, connections.
- Border Gateway Protocol (BGP) for routing table updates.

Translation between IP addresses and domain names

- Domain Name System (DNS).

7

Types of Addresses in Internet

Private IP address

• Private addresses are not routable over the internet
- 10.0.0.0/8 (10.x.x.x)
- 172.16.0.0/12 (172.16.x.x)
- 192.168.0.0/16 (192.168.x.x)

▶ NAT (Network Address Translation): the process of replacing
a private IP address to a public IP address and vice-versa.

Loopback Address

• localhost, Interface lo
- 127.0.0.0/8 (127.x.x.x)
- Commonly used 127.0.0.1

8

Network Address Translation (NAT)

9

Networking

Data is transmitted in small chunks.

- At Level 3 these chunks are called packets.
- At Level 2 these chunks are called dataframe.

A packet/frame has 2 primary subdivisions: Header and Data.

10

TCP / IP Security Issues

• Anyone can send to any port on any host.
• No check on authenticity of IP address.
• Network packets are not private (Intermediate
networks cannot be trusted).

• TCP state is easy to guess.

11

Sending Packets

Creation of packets is handled by the OS.

In our programs, we specify the data that needs to be sent;
the packets are then created by the OS and sent over the
network to the destination.

12

Example Program to Send a Packet

SendPkt.py

import socket
IP = ”127.0.0.1”
PORT = 9090
data = b'Hello World!'

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto(data, (IP, PORT))

$ python SendPkt.py

$ nc -luvp 9090

13

Receiving Packets

Packets go through the network routers and eventually reach
the destination IP address.

Packet at the destination goes through different layers, Data
link, IP, Network layer; and finally data is handed over to the
application (thorough the socket).

14

e.g. Program to receive a packet

ReceivePkt.py

import socket

IP = ”0.0.0.0”
PORT = 9090
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(IP, PORT)

While True:
data, (ip, port) = sock.recvfrom(1024)
print(”Sender: {} and Port: {}”.format(ip, port))
print(”Received Message: {}”.format(data))

$ nc -u <IP address> -p 9090

Why did we not bind the client with a port number?
15

Protocols, Vulnerabilities and
Attacks By Attack Surface (i.e.
Layers)

16

Attack Types

“Most” attacks on the Network Interface and the Network
layer are DoS and Spoofing attacks.

DoS: Resource exhaustion which leads to lack of availability.
• Categorisation by Volume (exhausting bandwidth):

- Volumetric, e.g., ICMP Flood, UDP Flood
- Protocol/Application (misusing a protocol or an
application to disrupt or exhaust the target’s resources)

• e.g. protocol: SYN Flood, Ping of Death, Smurf
Attack, Fragmentation Attacks

• e.g. application: HTTP Flood, Slowloris
• Categorisation by resource disparity (attack v defence):

- Symmetric
- Asymmetric (substantial damage with minimal resources)

• Categorisation by Direction:
- Direct
- Reflected 17

Sniffing and Spoofing

Fundamental skills that lots of network attacks depend on.

• Sniffing: (a.k.a snooping) tapping each packet as it flows
across the network; i.e., it is a technique in which a user
sniffs data belonging to other users of the network.

• Spoofing: forging a packet, to put some fake information
in a packet and send it out.

18

Packet Sniffing

Many LAN networks work with a broadcast medium.

- Packets on the wire are heard by all machines in that
network.

- If the destination address matches with the machine’s
address, it accepts it; otherwise, it rejects it.

Addresses:

- Layer 2: MAC address: identifies a machine on a network.
- Layer 3: IP address: identifies a network.

19

Packet Sniffing

Layer 2: How do we tell the NIC card to accept all the packets
irrespective of what it is programmed to receive (specified by
the destination MAC address)?

- Set NIC card in promiscuous mode.

Layer 3: Checks destination IP address: not for me→ drops.

- However, many OS provide raw socket type:
• in normal socket, packets get passed through the TCP/IP
protocol stack: each layer strips the corresponding
headers, the application gets the data.

• in raw sockets, the packets are passed directly by the OS
to the application, it includes all the headers.

20

Packet Sniffing: Programmes/Libraries

Although we can write our own sniffer programs,

- it will be time consuming (involves low level
programming)

- not portable

Sniffing API:
• PCAP (Packet Capture API)

- lipcap in linux, WinPcap and Npcap in Windows
- Written in C. Other languages offer wrappers.
- Widely used by many tools:

- Wireshark
- tcpdump
- Scapy
- McAfee
- Nmap
- Snort, … 21

Packet Sniffing using Scapy

Scapy
(https://scapy.readthedocs.io/en/latest/introduction.html)

- is built on top of Pcap.
- is a packet manipulation tool for computer networks,
originally written in Python

Installation:
$ sudo pip3 install scapy

Importing Scapy in a python program:
from scapy.all import *

22

https://scapy.readthedocs.io/en/latest/introduction.html

Scapy: Example

from scapy.all import *
pkt = sniff(iface='enp0s3',

filter='icmp or udp',
count=10)

pkt.summary ()

Ways to display:

- hexdump()
- pkt.show()

23

Layers and Headers

24

What’s in the packet

E.g.: the packet that we get through Scapy is an object of type
Ethernet:
>>> pkt
<Ether type =IPv4 | <IP frag = 0 proto = udp | UDP | Raw

load = 'hello' | >>>>

>>> pkt.payload
<IP frag = 0 proto = udp | UDP | Raw load = 'hello' |

>>>

>>> pkt.payload.payload
UDP | Raw load = 'hello' | >>

>>> pkt.payload.payload.payload
Raw load = 'hello' | >

25

Accessing Layers

>>> pkt.haslayer(UDP)
True
>>> pkt.haslayer(TCP)
0

>>> pkt.getlayer(UDP)
UDP | Raw load = 'hello' | >>

>>> pkt[UDP]
UDP | Raw load = 'hello' | >>

>>> pkt[Raw].load
b'hello'

26

Get Information of Protocol Classes

Get attribute names:
>>> ls(IP)

Get method names:
>>> help(IP)

27

Using Tools : Wireshark

Free and open source network protocol analyser.

Similar to TCPDump but has a graphical front-end:

28

Packet Spoofing

Recap: Sending a normal packet
import socket
IP = ”127.0.0.1”
PORT = ”9090”
data = b'Hello World !'
sock = socket(socket.AF_INET, socket.SOCK_DGRAM)
Sock.sendto(data, (IP, PORT))

Source IP? Source Port?

TCP/IP Protocol stack creates the packet by adding headers
(by different layers). We generally set only a few attributes of
headers (destination IP address, port number, some flags).

29

Packet Spoofing with Scapy

Constructing packets:

- We need to control the headers for packet snooping.
- raw socket sends the forged packets.

>>> a = IP(src='1.2.3.4', dst ='10.20.30.40')
>>> b = UDP(sport='1234', dport ='1020')
>>> c = ”Hello World”
>>> pkt = a/b/c
>>> pkt.show()

30

Spoofing ICMP Packet

from scapy.all import *

ip = IP(src='1.2.3.4', dst='94.180.216.34')
icmp = ICMP()
pkt = ip/icmp
send(pkt, verbose=0)

31

Spoofing UDP Packet

from scapy.all import *

ip = IP(src='1.2.3.4', dst='94.180.216.34')
udp = UDP(sport=9090, dport=9100)
data = 'Hello! \n'
pkt = ip/udp/data
send(pkt)

32

Sniff Request and Spoof Reply

- Sniffing traffic, knows what is being requested by A.
- Sends data to A showing that the data has come from B.

33

Next: Physical Layer and Data Link Layer
Attacks

33

	TCP/IP Basics
	Protocols, Vulnerabilities and Attacks By Attack Surface (i.e. Layers)

