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TCP/IP Basics
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How Internet works

Protocol: Agreement on how to communicate.

Internet is based on the TCP/IP protocol.

Transmission Control Protocol / Internet Protocol (TCP/IP) is a
suite of many protocols for transmitting information on a
network.

- Often referred to as a “protocol stack”.
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OSI and TCP/IP Models

OSI reference model: divides the communication functions
used by two hosts into seven separate layers.

TCP/IP has its own stack of protocols.

OSI Layers
Application
Presentation
Session
Transport
Network
Data Link
Physical

TCP/IP Layers

Application

Transport
Internet

Network Interface

Note: Direct or strict comparisons of the OSI and TCP/IP models should be avoided,

because the layering in TCP/IP is not a principal design criterion. 3



TCP/IP Protocols

TCP/IP layers TCP/IP Protocols

Application Specific Semantics Application HTTP, DNS, BGP,
NTP, SMTP, IMAP,
FTP, NFS, SNMP

E2E communication between
processes; Adds ports/reliabil-
ity

Transport TCP, UDP

Adds global addresses;
Requires routing

Network IP, ICMP

Adds framing & destination;
Still assumes shared link.
Broadcasts on shared link

Network Interface Ethernet, 802.11
(wifi), High-Level
Data Link Control
(HDLC), Asyn-
chronous Transfer
Mode (ATM), PPP

4



TCP / IP Network

• THE NETWORK IS DUMB.
• End-hosts are the periphery (users, devices).
• Routers and switches are Intermediary devices that:

- Route (figure out where to forward).
- Forward (actually send).

Principles of IP:

• The routers have no knowledge of ongoing connections
through them.

• They do “destination-based” routing and forwarding.
- Given the destination IP address in the packet, send it to
the “next hop” that is best suited to help ultimately get
the packet there.
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Types of Addresses in Internet

• Media Access Control (MAC) addresses in the network
access layer.
- Associated with network interface card (NIC).
- 48 bits or 64 bits.

• IP addresses for the network layer.
- 32 bits for IPv4, and 128 bits for IPv6.
- e.g., 128.3.23.3

• IP addresses + ports for the transport layer.
- e.g., 128.3.23.3:80

• Domain names for the application/human layer.
- e.g., ecs.wgtn.ac.nz
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Routing and Translation of Addresses

Translation between IP addresses and MAC addresses.

- Address Resolution Protocol (ARP) for IPv4.
- Neighbour Discovery Protocol (NDP) for IPv6.

Routing with IP addresses

- TCP, UDP, IP for routing packets, connections.
- Border Gateway Protocol (BGP) for routing table updates.

Translation between IP addresses and domain names

- Domain Name System (DNS).
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Types of Addresses in Internet

Private IP address

• Private addresses are not routable over the internet
- 10.0.0.0/8 (10.x.x.x)
- 172.16.0.0/12 (172.16.x.x)
- 192.168.0.0/16 (192.168.x.x)

▶ NAT (Network Address Translation): the process of replacing
a private IP address to a public IP address and vice-versa.

Loopback Address

• localhost, Interface lo
- 127.0.0.0/8 (127.x.x.x)
- Commonly used 127.0.0.1
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Network Address Translation (NAT)
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Networking

Data is transmitted in small chunks.

- At Level 3 these chunks are called packets.
- At Level 2 these chunks are called dataframe.

A packet/frame has 2 primary subdivisions: Header and Data.
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TCP / IP Security Issues

• Anyone can send to any port on any host.
• No check on authenticity of IP address.
• Network packets are not private (Intermediate
networks cannot be trusted).

• TCP state is easy to guess.

11



Sending Packets

Creation of packets is handled by the OS.

In our programs, we specify the data that needs to be sent;
the packets are then created by the OS and sent over the
network to the destination.
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Example Program to Send a Packet

SendPkt.py

import socket
IP = ”127.0.0.1”
PORT = 9090
data = b'Hello World!'

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto(data, (IP, PORT))

$ python SendPkt.py

$ nc -luvp 9090
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Receiving Packets

Packets go through the network routers and eventually reach
the destination IP address.

Packet at the destination goes through different layers, Data
link, IP, Network layer; and finally data is handed over to the
application (thorough the socket).
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e.g. Program to receive a packet

ReceivePkt.py

import socket

IP = ”0.0.0.0”
PORT = 9090
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(IP, PORT)

While True:
data, (ip, port) = sock.recvfrom(1024)
print(”Sender: {} and Port: {}”.format(ip, port))
print(”Received Message: {}”.format(data))

$ nc -u <IP address> -p 9090

Why did we not bind the client with a port number?
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Protocols, Vulnerabilities and
Attacks By Attack Surface (i.e.
Layers)
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Attack Types

“Most” attacks on the Network Interface and the Network
layer are DoS and Spoofing attacks.

DoS: Resource exhaustion which leads to lack of availability.
• Categorisation by Volume (exhausting bandwidth):

- Volumetric, e.g., ICMP Flood, UDP Flood
- Protocol/Application (misusing a protocol or an
application to disrupt or exhaust the target’s resources)

• e.g. protocol: SYN Flood, Ping of Death, Smurf
Attack, Fragmentation Attacks

• e.g. application: HTTP Flood, Slowloris
• Categorisation by resource disparity (attack v defence):

- Symmetric
- Asymmetric (substantial damage with minimal resources)

• Categorisation by Direction:
- Direct
- Reflected 17



Sniffing and Spoofing

Fundamental skills that lots of network attacks depend on.

• Sniffing: (a.k.a snooping) tapping each packet as it flows
across the network; i.e., it is a technique in which a user
sniffs data belonging to other users of the network.

• Spoofing: forging a packet, to put some fake information
in a packet and send it out.
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Packet Sniffing

Many LAN networks work with a broadcast medium.

- Packets on the wire are heard by all machines in that
network.

- If the destination address matches with the machine’s
address, it accepts it; otherwise, it rejects it.

Addresses:

- Layer 2: MAC address: identifies a machine on a network.
- Layer 3: IP address: identifies a network.
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Packet Sniffing

Layer 2: How do we tell the NIC card to accept all the packets
irrespective of what it is programmed to receive (specified by
the destination MAC address)?

- Set NIC card in promiscuous mode.

Layer 3: Checks destination IP address: not for me→ drops.

- However, many OS provide raw socket type:
• in normal socket, packets get passed through the TCP/IP
protocol stack: each layer strips the corresponding
headers, the application gets the data.

• in raw sockets, the packets are passed directly by the OS
to the application, it includes all the headers.
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Packet Sniffing: Programmes/Libraries

Although we can write our own sniffer programs,

- it will be time consuming (involves low level
programming)

- not portable

Sniffing API:
• PCAP (Packet Capture API)

- lipcap in linux, WinPcap and Npcap in Windows
- Written in C. Other languages offer wrappers.
- Widely used by many tools:

- Wireshark
- tcpdump
- Scapy
- McAfee
- Nmap
- Snort, … 21



Packet Sniffing using Scapy

Scapy
(https://scapy.readthedocs.io/en/latest/introduction.html)

- is built on top of Pcap.
- is a packet manipulation tool for computer networks,
originally written in Python

Installation:
$ sudo pip3 install scapy

Importing Scapy in a python program:
from scapy.all import *
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Scapy: Example

from scapy.all import *
pkt = sniff(iface='enp0s3',

filter='icmp or udp',
count=10)

pkt.summary ()

Ways to display:

- hexdump()
- pkt.show()
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Layers and Headers
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What’s in the packet

E.g.: the packet that we get through Scapy is an object of type
Ethernet:
>>> pkt
<Ether type =IPv4 | <IP frag = 0 proto = udp | UDP | Raw

load = 'hello' | >>>>

>>> pkt.payload
<IP frag = 0 proto = udp | UDP | Raw load = 'hello' |

>>>

>>> pkt.payload.payload
UDP | Raw load = 'hello' | >>

>>> pkt.payload.payload.payload
Raw load = 'hello' | >
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Accessing Layers

>>> pkt.haslayer(UDP)
True
>>> pkt.haslayer(TCP)
0

>>> pkt.getlayer(UDP)
UDP | Raw load = 'hello' | >>

>>> pkt[UDP]
UDP | Raw load = 'hello' | >>

>>> pkt[Raw].load
b'hello'
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Get Information of Protocol Classes

Get attribute names:
>>> ls(IP)

Get method names:
>>> help(IP)
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Using Tools : Wireshark

Free and open source network protocol analyser.

Similar to TCPDump but has a graphical front-end:
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Packet Spoofing

Recap: Sending a normal packet
import socket
IP = ”127.0.0.1”
PORT = ”9090”
data = b'Hello World !'
sock = socket(socket.AF_INET, socket.SOCK_DGRAM)
Sock.sendto(data, (IP, PORT))

Source IP? Source Port?

TCP/IP Protocol stack creates the packet by adding headers
(by different layers). We generally set only a few attributes of
headers (destination IP address, port number, some flags).
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Packet Spoofing with Scapy

Constructing packets:

- We need to control the headers for packet snooping.
- raw socket sends the forged packets.

>>> a = IP(src='1.2.3.4', dst ='10.20.30.40')
>>> b = UDP(sport='1234', dport ='1020')
>>> c = ”Hello World”
>>> pkt = a/b/c
>>> pkt.show()
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Spoofing ICMP Packet

from scapy.all import *

ip = IP(src='1.2.3.4', dst='94.180.216.34')
icmp = ICMP()
pkt = ip/icmp
send(pkt, verbose=0)
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Spoofing UDP Packet

from scapy.all import *

ip = IP(src='1.2.3.4', dst='94.180.216.34')
udp = UDP(sport=9090, dport=9100)
data = 'Hello! \n'
pkt = ip/udp/data
send(pkt)
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Sniff Request and Spoof Reply

- Sniffing traffic, knows what is being requested by A.
- Sends data to A showing that the data has come from B.
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Next: Physical Layer and Data Link Layer
Attacks

33


	TCP/IP Basics
	Protocols, Vulnerabilities and Attacks By Attack Surface (i.e. Layers)

