

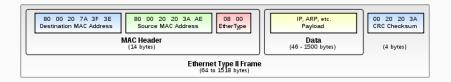
PHY and Link Layers: Attacks and Countermeasures

CYBR371: System and Network Security, (2024/T1)

Arman Khouzani, Mohammad Nekooei Slides modified from "Masood Mansoori" 18 March, 2024

Victoria University of Wellington - School of Engineering and Computer Science

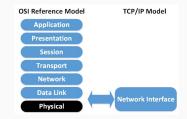
Data Link Layer: Recap



Data Link (Network Interface) Layer functions:

- Framing Physical Addressing
- Error Control (single bit, multiple bits, and burst error).
 - · How does it detect errors?

- Flow Control
- Multiple Access

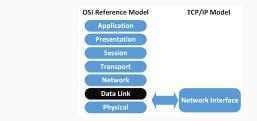


Ethernet Broadcast Address: FF:FF:FF:FF:FF:FF

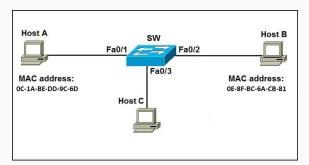
Ether Type: indicates the type of payload, e.g.,

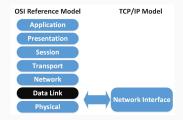
0x0800 Internet Protocol version 4 (IPv4)0x0806 Address Resolution Protocol (ARP)

Network Interface (Data Link) Layer Attacks



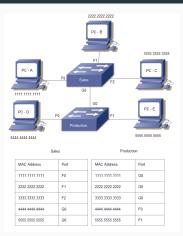
Physical Layer Attacks:


- Power Surge
- EMP
- Jamming
- Cutting wires


What can we do to protect systems against such attacks?

Network Interface Layer (Physical) Attacks

How does Data Link layer packet transmission work?



MAC Layer attacks

- CAM table exhaustion
- MAC address spoofing
- Denial of service

CAM table (MAC address table, switch forwarding table)

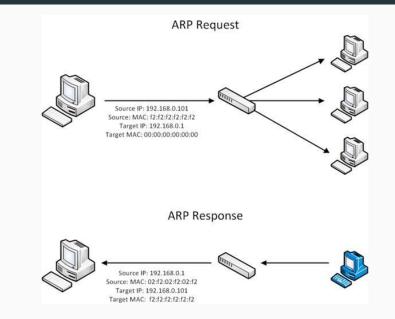
A MAC address table, sometimes called a Content Addressable Memory (CAM) table, is used on **Ethernet switches** to determine where to forward traffic on a LAN. Essentially turns a switch into a hub:

- Floods the CAM table with new MAC-port mappings.
- Once table fills up, it broadcasts all messages (fail open).

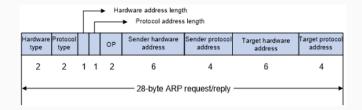
A simple tool is "macof" (monkey.org/~dugsong/dsniff/)

Vlan	Mac Address	Туре	Ports
1	0223.E754.641E	DYNAMIC	Fa0/1
1	01E0.4F19.2183	DYNAMIC	Fa0/2

Vlan	Mac Address	Туре	Ports
1	0223.E754.641E	DYNAMIC	Fa0/1
1	01E0.4F19.2183	DYNAMIC	Fa0/2
1	0F29.E834.4215	DYNAMIC	Fa0/1
1	0405.F531.541E	DYNAMIC	Fa0/1
1	0884.A754.319C	DYNAMIC	Fa0/1
1	0067.C754.640F	DYNAMIC	Fa0/1
?	?	?	??


Primarily used to translate IP addresses to Ethernet MAC addresses on a local area network.

If IP address is not found in the **ARP table**:


- A host sends a broadcast **ARP request**:
 - "Who has 10.0.3.4? Tell 10.0.3.2"
- System with that IP address sends a unicast ARP reply:
 - "I am 10.0.3.4"
- This includes the MAC address which can receive packets for that IP.

Message types: a) ARP request b) ARP reply c) ARP Gratuitous Message.

ARP Request and Response Process

ARP Request and Response Process


```
Ethernet II, Src: fa:16:3e:38:94:9d (fa:16:3e:38:94:9d), Dst: Broadcast (ff:ff:ff:ff:ff:ff)

    Destination: Broadcast (ff:ff:ff:ff:ff:ff)

          Address: Broadcast (ff:ff:ff:ff:ff:ff)
          .... ..1. .... .... = LG bit: Locally administered address (this is NOT the factory default)
          .... ...1 .... .... .... = IG bit: Group address (multicast/broadcast)
    Source: fa:16:3e:38:94:9d (fa:16:3e:38:94:9d)
      Type: ARP (0x0806)

    Address Resolution Protocol (request)

      Hardware type: Ethernet (1)
      Protocol type: IPv4 (0x0800)
      Hardware size: 6
      Protocol size: 4
      Opcode: request (1)
      Sender MAC address: fa:16:3e:38:94:9d (fa:16:3e:38:94:9d)
      Sender IP address: 192.168.12.1
      Target MAC address: 00:00:00 00:00:00 (00:00:00:00:00:00)
      Target IP address: 192.168.12.2
```

ARP Response that was not prompted by an ARP Request.

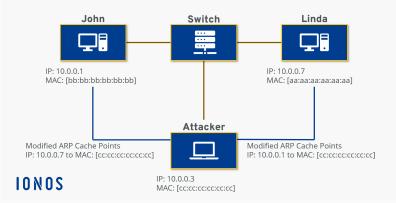
- The Gratuitous ARP is sent by a node as a broadcast (FF:FF:FF:FF:FF:FF MAC address) to announce its IP to MAC mapping to the other hosts on the network.
- 1. When a host newly joins a network

ARP Response that was not prompted by an ARP Request.

- The Gratuitous ARP is sent by a node as a broadcast (FF:FF:FF:FF:FF:FF MAC address) to announce its IP to MAC mapping to the other hosts on the network.
- 1. When a host newly joins a network
- 2. May be used in virtual environments, where a specific Virtual Machine 'jumps' to a new physical system

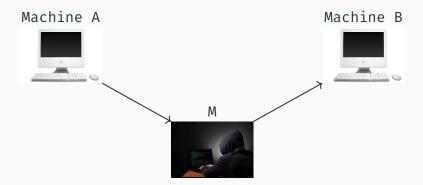
ARP Cache

Since sending an ARP request/reply for each IP datagram is inefficient, hosts maintain a cache (ARP Cache) of current entries (these entries are set to automatically expire after a period of time (typically 10 to 20 mins).


To view the ARP cache, run command: arp -n

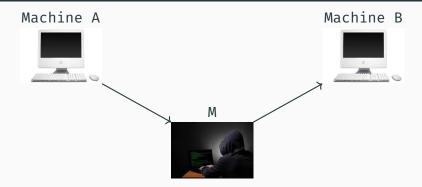
Address	HWtype	HWaddress	Flags	Iface
10.0.2.2	ether	52:54:0f:12:35:00		p0s3
10.0.2.10	ether	08:00:27:c3:2c:05		enp0s3
10.0.2.1	ether	10:14:05:43:fe:93		enp0s3
10.0.2.9	ether	24:e5:23:11:24:01		enp0s

- Clear ARP cache :
 - Run command: sudo ip -s -s neigh flush all Run command: arp -n (should now show less rows)


ARP spoofing, also called ARP cache poisoning:

- Involves causing a target to associate an IP address with an incorrect MAC address.
- Inject forged information into ARP cache;
- MAC Spoofing at:
 - host,
 - Switch,
 - Router
- used for:
 - MiTM
 - DoS


```
from scapy.all import *
E = Ether()
A = ARP()
# add the required attributes:
 IP address of sender (victim Machine),
#
#
   MAC address of sender (forged),
#
  Op \ Tvpe = 1/2.
Ħ
   IP address of receiver
frame = E/A
sendp(frame)
```


Man-In-the-Middle (MITM) attack through ARP Spoofing

M has to be on the same network as A and B.

NIC only looks at the MAC header, does not look at the IP header, which is a payload of the Ethernet header

Man-In-the-Middle (MITM) attack through ARP Spoofing

Easy if M is in the middle, e.g. a router sitting between A and B.

What if you are not in the middle? Redirect traffic...

What happens when packet goes to the IP layer? 2 scenarios:

- M is a router
- M is a host

Countermeasures

Question: Why does such an attack succeed in the first place?

Defence:

- Hold down timers
- Static ARP table
- Dynamic ARP inspection (uses DHCP snooping at gateways)
- Port Security

Detection:

- Arpwatch: observes change in ARP packets (only suitable for networks with static IP addresses)
- XARP: Observes change in ARP packets and also sends ARP packets to validate ARP tables

Next: IP (Layer 3) Security