Access Control: Principles and Practice

Ravi S. Sandhu* and Pierangela Samaratif

The purpose of access control is to limit the actions or operations that a legitimate user of a
computer system can perform. Access control constrains what a user can do directly, as well what
programs executing on behalf of the users are allowed to do. In this way access control seeks to
prevent activity which could lead to breach of security.

This article begins with an explanation of access control and its relationship to other security
services such as authentication, auditing and administration. It then reviews the access matrix
model and describes different approaches to implementing the access matrix in practical systems.
This is followed by a discussion of access control policies which are commonly found in current
systems. Finally, we briefly consider the administration of access control.

1 Access Control and Other Security Services

Access control relies on and coexists with other security services in a computer system. This is
illustrated in figure 1. Access control is concerned with limiting the activity of legitimate users. It
is enforced by a reference monitor which mediates every attempted access by a user (or program
executing on behalf of that user) to objects in the system. The reference monitor consults an
authorization database in order to determine if the user attempting to do an operation is actu-
ally authorized to perform that operation. Authorizations in this database are administered and
maintained by a security administrator. The administrator sets these authorizations on the basis
of the security policy of the organization. Users may also be able to modify some portion of the
authorization database, for instance, to set permissions for their personal files. Auditing monitors
and keeps a record of relevant activity in the system.

Figure 1 is a logical picture of security services and their interactions. It should not be inter-
preted literally. For instance, as we will see later, the authorization database is often stored with
the objects being protected by the reference monitor rather than in a physically separate area. The
picture is also somewhat idealized in that the separation between authentication, access control,
auditing and administration services may not always be so clear as this picture indicates. This
separation is considered highly desirable but is not always faithfully implemented in every system.

It is important to make a clear distinction between authentication and access control. Correctly
establishing the identity of the user is the responsibility of the authentication service. Access
control assumes that authentication of the user has been successfully verified prior to enforcement
of access control via a reference monitor. The effectiveness of the access control rests on a proper
user identification and on the correctness of the authorizations governing the reference monitor.

The reader is surely familiar with the process of signing on to a computer system by providing
an identifier and a password. In a networked environment authentication becomes more difficult for

*ISSE Department, MS 4A4, George Mason University, Fairfax, VA 22030. Voice: 703-993-1659, Fax: 703-993-
1638, email: sandhu@isse.gmu.edu

'Dipartmento di Scienze dell’Informazione, Universita degli Studi di Milano, Via Comelico 39/41, 20135, Milano,
Italy.

several reasons. If intruders can observe network traffic they can replay authentication protocols
to masquerade as legitimate users. Also, computers on the network need to mutually authenticate
each other. In this paper we assume that authentication has been correctly achieved, and focus on
what happens after that. For discussion of authentication issues in distributed systems the reader
is referred to [Neu94, WL92].

It is also important to understand that access control is not a complete solution for securing a
system. It must be coupled with auditing. Audit controls concern a posteriori analysis of all the
requests and activities of users in the system. Auditing requires the registration (logging) of all user
requests and activities for their later analysis. Audit controls are useful both as deterrent (users
may be discouraged from attempting violations if they know all their requests are being tracked)
as well as a means to analyze the users behavior in using the system to find out about possible
attempted or actual violations. Moreover, auditing can be useful for determining possible flaws in
the security system. Finally, auditing is essential to ensure that authorized users do not misure
their privileges. In other words, to hold users accountable for their actions. Note that effective
auditing requires that good authentication be in place.

In access control systems a distinction is generally made between policies and mechanisms.
Policies are high level guidelines which determine how accesses are controlled and access decisions
determined. Mechanisms are low level software and hardware functions which can be configured to
implement a policy. Security researchers have sought to develop access control mechanisms which
are largely independent of the policy for which they could be used. This is a desirable goal to allow
reuse of mechanisms to serve a variety of security purposes. Often, the same mechanisms can be
used in support of secrecy, integrity or availability objectives. On the other hand, sometimes the
policy alternatives are so many and diverse that system implementors feel compelled choose one in
preference to the others.

In general, there do not exist policies which are “better” than others. Rather there exist policies
which ensure more protection than others. However, not all systems have the same protection
requirements. Policies suitable for a given system may not be suitable for another. For instance,
very strict access control policies, which are crucial to some systems may be inappropriate for
environments where users require greater flexibility. The choice of access control policy depends on
the particular characteristics of the environment to be protected.

2 The Access Matrix

Security practitioners have developed a number of abstractions over the years in dealing with access
control. Perhaps the most fundamental of these is the realization that all resources controlled by a
computer system can be represented by data stored in objects (e.g., files). Therefore protection of
objects is the crucial requirement, which in turn facilitates protection of other resources controlled
via the computer system. (Of course, these resources must also be physically protected so they
cannot be manipulated directly bypassing the access controls of the computer system.)

Activity in the system is initiated by entities known as subjects. Subjects are typically users or
programs executing on behalf of users. A user may sign on to the system as different subjects on
different occasions, depending on the privileges the users wishes to exercise in a given session. For
example, a user working on two different projects may sign on for purpose of working on one project
or the other. We then have two subjects corresponding to this user, depending on the project the
user is currently working on.

A subtle point that is often overlooked is that subjects can themselves be objects. A subject can
create additional subjects in order to accomplish its task. The children subjects may be executing

on various computers in a network. The parent subject will usually be able to suspend or terminate
its children as appropriate. The fact that subjects can be objects corresponds to the observation
that the initiator of one operation can be the target of another. (In network parlance subjects are
sometimes called initiators, and objects called targets.)

The subject-object distinction is basic to access control. Subjects initiate actions or operations
on objects. These actions are permitted or denied in accord with the authorizations established in
the system. Authorization is expressed in terms of access rights or access modes. The meaning of
access rights depends upon the object in question. For files the typical access rights are Read, Write,
Execute and Own. The meaning of the first three of these is self evident. Ownership is concerned
with controlling who can change the access permissions for the file. An object such as a bank
account may have access rights Inquiry, Credit and Debit corresponding to the basic operations
that can be performed on an account. These operations would be implemented by application
programs, whereas for a file the operations would typically be provided by the Operating System.

The access matrix is a conceptual model which specifies the rights that each subject possesses
for each object. There is a row in this matrix for each subject, and a column for each object.
Each cell of the matrix specifies the access authorized for the subject in the row to the object in
the column. The task of access control is to ensure that only those operations authorized by the
access matrix actually get executed. This is achieved by means of a reference monitor, which is
responsible for mediating all attempted operations by subjects on objects. Note that the access
matrix model clearly separates the problem of authentication from that of authorization.

An example of an access matrix is shown in figure 2, where the rights R and W denote read and
write respectively, and the other rights are as discussed above. The subjects shown here are John,
Alice and Bob. There are four files and two accounts. This matrix specifies that, for example, John
is the owner of File 3 and can read and write that file, but John has no access to File 2 or File 4.
The precise meaning of ownership varies from one system to another. Usually the owner of a file
is authorized to grant other users access to the file, as well as revoke access. Since John owns File
1, he can give Alice the R right and Bob the R and W rights as shown in figure 2. John can later
revoke one or more of these rights at his discretion.

The access rights for the accounts illustrate how access can be controlled in terms of abstract
operations implemented by application programs. The Inquiry operation is similar to read in that
it retrieves information but does not change it. Both the Credit and Debit operations will involve
reading the previous account balance, adjusting it as appropriate and writing it back. The programs
which implement these operations require read and write access to the account data. Users, however,
are not allowed to read and write the account object directly. They can manipulate account objects
only indirectly via application programs which implement the Debit and Credit operations.

Also note that there is no Own right for accounts. Objects such as bank accounts do not really
have an owner who can determine the access of other subjects to the account. Clearly the user who
establishes the account at the bank should not be the one to decide who can access the account.
Within the bank different officials can access the account on basis of their job functions in the
organization.

3 Implementation Approaches

In a large system the access matrix will be enormous in size, and most of its cells are likely to be
empty. Accordingly the access matrix is very rarely implemented as a matrix. We now discuss
some common approaches to implementing the access matrix in practical systems.

3.1 Access Control Lists

A popular approach to implementing the access matrix is by means of Access Control Lists (ACLs).
Each object is associated with an ACL, indicating for each subject in the system the accesses the
subject is authorized to execute on the object. This approach corresponds to storing the matrix
by columns. ACLs corresponding to the access matrix of figure 2 are shown in figure 3. Essentially
the access matrix column for File 1 is stored in association with File 1, and so on.

By looking at an object’s ACL it is easy to determine which modes of access subjects are
currently authorized for that object. In other words ACLs provide for convenient access review
with respect to an object. It is also easy to revoke all access to an object by replacing the existing
ACL with an empty one. On the other hand determining all the accesses that a subject has is
difficult in an ACL-based system. It is necessary to examine the ACL of every object in the system
to do access review with respect to a subject. Similarly if all accesses of a subject need to be
revoked all ACLs must be visited one by one. (In practice revocation of all accesses of a subject
is often done by deleting the user account corresponding to that subject. This is acceptable if a
user is leaving an organization. However, if a user is reassigned within the organization it would be
more convenient to retain the account and change its privileges to reflect the changed assignment
of the user.)

Many systems allow group names to occur in ACLs. For example, an entry such as (ISSE, R)
can authorize all members of the ISSE group to read a file. Several popular Operating Systems,
such as Unix and VMS, implement an abbreviated form of ACLs in which a small number, often
only one or two, group names can occur in the ACL. Individual subject names are not allowed.
With this approach the ACL has a small fixed size so it can be stored using a few bits associated
with the file. At the other extreme there are a number of access control packages which allow
complicated rules in ACLs to limit when and how the access can be invoked. These rules can be
applied to individual users or to all users who match a pattern defined in terms of user names or
other user attributes.

3.2 Capabilities

Capabilities are a dual approach to ACLs. Each subject is associated with a list, called the capability
list, indicating for each object in the system, the accesses the subject is authorized to execute on the
object. This approach corresponds to storing the access matrix by rows. Figure 4 shows capability
lists for the files in figure 2. In a capability list approach it is easy to review all accesses that
a subject is authorized to perform, by simply examining the subject’s capability list. However,
determination of all subjects who can access a particular object requires examination of each and
every subject’s capability list. A number of capability-based computer systems were developed in
the 1970s, but did not prove to be commercially successful. Modern operating systems typically
take the ACL-based approach.

It is possible to combine ACLs and capabilities. Possession of a capability is sufficient for a
subject to obtain access authorized by that capability. In a distributed system this approach has
the advantage that repeated authentication of the subject is not required. This allows a subject to
be authenticated once, obtain its capabilities and then present these capabilities to obtain services
from various servers in the system. Each server may further use ACLs to provide finer-grained
access control.

3.3 Authorization Relations

We have seen that ACL- and capability-based approaches have dual advantages and disadvantages
with respect to access review. There are representations of the access matrix which do not favor
one aspect of access review over the other. For example, the access matrix can be represented by
an authorization relation (or table) as shown in figure 5. Each row, or tuple, of this table specifies
one access right of a subject to an object. Thus, John’s accesses to File 1 require three rows. If
this table is sorted by subject, we get the effect of capability lists. If it is sorted by object we get
the effect of ACLs. Relational database management systems typically use such a representation.

4 Access Control Policies

We will now discuss three different policies which commonly occur in computer systems as follows:
e classical discretionary policies,
e classical mandatory policies, and
e the emerging role-based policies.

We have added the qualifier “classical” to the first two of these to reflect the fact that these have
been recognized by security researchers and practitioners for a long time. However, in recent years
there is increasing consensus that there are legitimate policies which have aspects of both of these.
Role-based policies are an example of this fact.

It should be noted that access control policies are not necessarily exclusive. Different policies
can be combined to provide a more suitable protection system. This is indicated in figure 6. Each
of the three inner circles represents a policy which allows a subset of all possible accesses. When
the policies are combined only the intersection of their accesses is allowed. Such combination of
policies is relatively straightforward so long as there are no conflicts where one policy asserts that
a particular access must be allowed while another one prohibits it. Such conflicts between policies
need to be reconciled by negotiations at an appropriate level of management.

4.1 Classical Discretionary Policies

Discretionary protection policies govern the access of users to the information on the basis of the
user’s identity and authorizations (or rules) that specify, for each user (or group of users) and each
object in the system, the access modes (e.g., read, write, or execute) the user is allowed on the
object. Each request of a user to access an object is checked against the specified authorizations.
If there exists an authorization stating that the user can access the object in the specific mode, the
access is granted, otherwise it is denied.

The flexibility of discretionary policies makes them suitable for a variety of systems and appli-
cations. For these reasons, they have been widely used in a variety of implementations, especially
in the commercial and industrial environments.

However, discretionary access control policies have the drawback that they do not provide real
assurance on the flow of information in a system. It is easy to bypass the access restrictions stated
through the authorizations. For example, a user who is able to read data can pass it to other users
not authorized to read it without the cognizance of the owner. The reason is that discretionary
policies do not impose any restriction on the usage of information by a user once the user has got
it, i.e., dissemination of information is not controlled. By contrast dissemination of information is

controlled in mandatory systems by preventing information stored in high-level objects to flow into
low-level objects.

Discretionary access control policies based on explicitly specified authorization are said to be
closed, in that the default decision of the reference monitor is denial. Similar policies, called open
policies, could also be applied by specifying denials instead of permissions. In this case, for each user
and each object of the system, the access modes the user is forbidden on the object are specified.
Each access request by a user is checked against the specified (negative) authorizations and granted
only if no authorizations denying the access exist. The use of positive and negative authorizations
can be combined, allowing the specification of both the accesses to be authorized as well as the
accesses to be denied to the users. The interaction of positive and negative authorizations can
become extremely complicated [BSJ93].

4.2 Classical Mandatory Policies

Mandatory policies govern access on the basis of classification of subjects and objects in the system.
Each user and each object in the system is assigned a security level. The security level associated
with an object reflects the sensitivity of the information contained in the object, i.e, the potential
damage which could result from unauthorized disclosure of the information. The security level
associated with a user, also called clearance, reflects the user’s trustworthiness not to disclose
sensitive information to users not cleared to see it. In the simplest case, the security level is an
element of a hierarchical ordered set. In the military and civilian government arenas, the hierarchical
set generally consists of Top Secret (T'S), Secret (S), Confidential (C), and Unclassified (U), where
TS > S > C > U. Each security level is said to dominate itself and all others below it in this
hierarchy.

Access to an object by a subject is granted only if some relationship (depending on the type of
access) is satisfied between the security levels associated with the two. In particular, the following
two principles are required to hold.

Read down A subject’s clearance must dominate the security level of the object being read.

Write up A subject’s clearance must be dominated by the security level of the object being
written.

Satisfaction of these principles prevents information in high level objects (i.e., more sensitive) to
flow to objects at lower levels. The effect of these rules is illustrated in figure 7. In such a system
information can only flow upwards or within the same security class.

It is important to understand the relationship between users and subjects in this context. Let
us say that the human user Jane is cleared to S, and assume she always signs on to the system
as an S subject (i.e., a subject with clearance S). Jane’s subjects are prevented from reading TS
objects by the read-down rule. The write-up rule, however, has two aspects that seem at first sight
contrary to expectation.

e Firstly, Jane’s S subjects can write a TS object (even though they cannot read it). In
particular, they can overwrite existing TS data and therefore destroy it. Due to this integrity
concern, many systems for mandatory access control do not allow write up; but limit writing
to the same level as the subject. At the same time write up does allow Jane’s S subjects to
send electronic mail to TS subjects, and can have its benefits.

e Secondly, Jane’s S subjects cannot write C or U data. This means, for example, that Jane
can never send electronic mail to C or U users. This is contrary to what happens in the

paper world, where S users can write memos to C and U users. This seeming contradiction is
easily eliminated by allowing Jane to sign to the system as a C, or U, subject as appropriate.
During these sessions she can send electronic mail to C or, U and C, subjects respectively.

In other words a user can sign on to the system as a subject at any level dominated by the user’s
clearance. Why then bother to impose the write-up rule? The main reason is to prevent malicious
software from leaking secrets downward from S to U. Users are trusted not to leak such information,
but the programs they execute do not merit the same degree of trust. For example, when Jane
signs onto the system at the level her subjects cannot read S objects, and thereby cannot leak data
from S to U. The write-up rule also prevents users from inadvertently leaking information from
high to low.

In additional to hierarchical security levels, categories (e.g., Crypto, NATO, Nuclear) can also
be associated with objects and subjects. In this case the classification labels associated with each
subject and each object consists of a pair composed of a security level and a set of categories. The
set of categories associated with a user reflect the specific areas in which the user operates. The set
of categories associated with an object reflect the area to which information contained in objects are
referred. The consideration of categories provides a finer grained security classification. In military
parlance categories enforce restriction on the basis of the need-to-know principle, i.e., a subject
should be only given those accesses which required to carry out the subject’s responsibilities.

Mandatory access control can as well be applied for the protection of information integrity. For
example, the integrity levels could be Crucial (C), Important (I), and Unknown (U). The integrity
level associated with an object reflects the degree of trust that can be placed in the information
stored in the object, and the potential damage that could result from unauthorized modification
of the information. The integrity level associated with a user reflects the user’s trustworthiness for
inserting, modifying or deleting data and programs at that level. Principles similar to those stated
for secrecy are required to hold, as follows.

Read up A subject’s integrity level must be dominated by the integrity level of the object being
read.

Write down A subject’s integrity level must dominate the integrity level of the object being
written.

Satisfaction of these principles safeguard integrity by preventing information stored in low objects
(and therefore less reliable) to flow to high objects. This is illustrated in figure 8. Controlling
information flow in this manner is but one aspect of achieving integrity. Integrity in general
requires additional mechanisms, as discussed in [CFMS94, San94].

Note that the only difference between figures 7 and 8 is the direction of information flow, being
bottom to top in the former case and top to bottom in the latter. In other words both cases are
concerned with one-directional information flow. The essence of classical mandatory controls is
one-directional information flow in a lattice of security labels. For further discussion on this topic
see [San93].

4.3 Role-Based Policies

The discretionary and mandatory policies discussed above have been recognized in official standards,
notably the so-called Orange Book of the U.S. Department of Defense. A good introduction to the
Orange Book and its evaluation procedures is given in [Cho92].

There has been a strong feeling among security researchers and practitioners that many practical
requirements are not covered by these classical discretionary and mandatory policies. Mandatory

policies rise from rigid environments, like those of the military. Discretionary policies rise from
cooperative yet autonomous requirements, like those of academic researchers. Neither requirement
satisfies the needs of most commercial enterprises. Orange Book discretionary policy is too weak
for effective control of information assets, whereas Orange Book mandatory policy is focused on the
US Government policy for confidentiality of classified information. (In practice the military often
finds Orange Book mandatory policies to be too rigid and subverts them.)

Several alternatives to classical discretionary and mandatory policies have been proposed. These
policies allow the specification of authorizations to be granted to users (or groups) on objects like
in the discretionary approach, together with the possibility of specifying restrictions (like in the
mandatory approach) on the assignment or on the use of such authorizations. One of the promising
avenues which is receiving growing attention is that of role-based access control [FK92, SCFY94].

Role-based policies regulate the access of users to the information on the basis of the activities
the users execute in the system. Role based policies require the identification of roles in the
system. A role can be defined as a set of actions and responsibilities associated with a particular
working activity. Then, instead of specifying all the accesses each users is allowed to execute,
access authorizations on objects are specified for roles. Users are given authorizations to adopt
roles. A recent study by NIST confirms that roles are a useful approach for many commercial and
government organizations [FGL93].

The user playing a role is allowed to execute all accesses for which the role is authorized. In
general a user can take on different roles on different occasions. Also the same role can be played by
several users, perhaps simultaneously. Some proposals for role-based access control allow a user to
exercise multiple roles at the same time. Other proposals limit the user to only one role at a time,
or recognize that some roles can be jointly exercised while others must be adopted in exclusion to
one another. As yet there are no standards in this arena, so it is likely that different approaches
will be pursued in different systems.

The role-based approach has several advantages. Some of these are discussed below.

e Authorization management: Role-based policies benefit from a logical independence in
specifying user authorizations by breaking this task into two parts, one which assigns users to
roles and one which assigns access rights for objects to roles. This greatly simplifies security
management. For instance, suppose a user responsibilities change, say, due to a promotion.
The user’s current roles can be taken away and new roles assigned as appropriate for the
new responsibilities. If all authorization is directly between users and objects, it becomes
necessary to revoke all existing access rights of the user and assign new ones. This is a
cumbersome and time-consuming task.

e Hierarchical roles: In many applications there is a natural hierarchy of roles, based on
the familiar principles of generalization and specialization. An examples is shown in fig-
ure 9. Here the roles of hardware and software engineer are specializations of the engineer
role. A user assigned to the role of software engineer (or hardware engineer) will also inherit
privileges and permissions assigned to the more general role of engineer. The role of super-
vising engineer similarly inherits privileges and permissions from both software-engineer and
hardware-engineer roles. Hierarchical roles further simplify authorization management.

e Least privilege: Roles allow a user to sign on with the least privilege required for the
particular task at hand. Users authorized to powerful roles do not need to exercise them until
those privileges are actually needed. This minimizes the danger of damage due to inadvertent
errors or by intruders masquerading as legitimate users.

Separation of duties: Separation of duties refer to the principle that no user should be given
enough privileges to misuse the system on their own. For example, the person authorizing
a paycheck should not also be the one who can prepare them. Separation of duties can be
enforced either statically (by defining conflicting roles, i.e., roles which cannot be executed
by the same user) or dynamically (by enforcing the control at access time). An example of
dynamic separation of duty is the two-person rule. The first user to execute a two-person
operation can be any authorized user, whereas the second user can be any authorized user
different from the first.

Object classes: Role-based policies provides a classification of users according to the activ-
ities they execute. Analogously, a classification should be provided for objects. For example,
generally a clerk will need to have access to the bank accounts, and a secretary will have ac-
cess to the letters and memos (or some subset of them). Objects could be classified according
to their type (e.g., letters, manuals) or to their application area (e.g., commercial letters, ad-
vertising letters). Access authorizations of roles should then be on the basis of object classes,
not specific objects. For example, a secretary role can be given the authorization to read
and write the entire class of letters, instead of giving it explicit authorization for each single
letter. This approach has the advantage of making authorization administration much easier
and better controlled. Moreover, the accesses authorized on each object are automatically
determined according to the type of the object without need of specifying authorizations upon
each object creation.

5 Administration of Authorization

Administrative policies determine who is authorized to modify the allowed accesses. This is one of
the most important, and least understood, aspects of access controls.

In mandatory access control the allowed accesses are determined entirely on basis of the se-
curity classification of subjects and objects. Security levels are assigned to users by the security
administrator. Security levels of objects are determined by the system on the basis of the levels
of the users creating them. The security administrator is typically the only one who can change
security levels of subjects or objects. The administrative policy is therefore very simple.

Discretionary access control permits a wide range of administrative policies. Some of these are
described below.

Centralized: A single authorizer (or group) is allowed to grant and revoke authorizations
to the users.

Hierarchical: A central authorizer is responsible for assigning administrative responsibilities
to other administrators. The administrators can then grant and revoke access authorizations
to the users of the system. Hierarchical administration can be applied, for example, according
to the organization chart.

Cooperative: Special authorizations on given resources cannot be granted by a single au-
thorizer but needs cooperation of several authorizers.

Ownership: A user is considered the owner of the objects he/she creates. The owner can
grant and revoke access rights for other users to that object.

Decentralized: In decentralized administration the owner of an object can also grant other
users the privilege of administering authorizations on the object.

Within each of these there are many possible variations.

Role-based access control has a similar wide range of possible administrative policies. In this
case roles can also be used to manage and control the administrative mechanisms.

Delegation of administrative authority is an important area in which existing access control
systems are deficient. In large distributed systems centralized administration of access rights is
infeasible. Some existing systems allow administrative authority for a specified subset of the objects
to be delegated by the central security administrator to other security administrators. For example,
authority to administer objects in a particular region can be granted to the regional security
administrator. This allows delegation of administrative authority in a selective piecemeal manner.
However, there is a dimension of selectivity that is largely ignored in existing systems. For instance,
it may be desirable that the regional security administrator be limited to granting access to these
objects only to employees who work in that region. Control over the regional administrators can
be centrally administered, but they can have considerable autonomy within their regions. This
process of delegation can be repeated within each region to set up sub-regions and so on.

6 Conclusion

Access control is required to achieve secrecy, integrity or availability objectives. Access control lists
have been a popular approach for implementing the access matrix model in computer operating
systems. Some systems approximate ACLs by limiting the granularity of ACL entries to one
or two user groups. Other systems allow considerable sophistication. ACLs have disadvantages
for access review and revocation on a per-subject basis, but on a per-object basis they are very
good. More flexible representations such as authorization tables provide for superior management
of access rights, but are usually available only in database management systems. In a distributed
system a combination of capabilities for coarse-grained control of access to servers, with ACLs or
authorization tables for finer-gramied controls within servers, is an attractive combination.

The classical distinction between mandatory and discretionary access control policies is an useful
one. But these two policies do not solve many practical needs. Role-based access control policies
offer an attractive alternative to the strict rigidity of traditional mandatory controls, while providing
some of the flexibility inherent in discretionary controls. Effective decentralized administration of
authorization is an area which could use improvement.

Finally, it is important to integrate computer and network (or communications) security more
closely to develop a true discipline of information security. Although progress has been made, much
remains to be done.

Acknowledgements

The authors thank the referees and editors for their comments which have substantially improved
the readability of the paper. Prof. Giancarlo Martella of the University of Milan provided valuable
feedback on early drafts of this paper. The work of Ravi Sandhu was partially supported by
National Science Foundation grant CCR-9202270 and National Security Agency contract MDA904-
92-C-5141. Ravi Sandhu is grateful to Dorothy Darnauer, Nathaniel Macon, Howard Stainer, and
Mike Ware for making this work possible.

10

References

[BSJ93]

[CFMS94]

[Cho92]

[FGLY3]

[FK92]

[Neu94]

[San93]

[San94]

[SCFY94]

[WL92|

Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. Authorizations in relational
database management systems. In 7st ACM Conference on Computer and Communi-
cations Security, pages 130-139, Fairfax, VA, November, 3-5 1993.

S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. Addison
Wesley, 1994.

Santosh Chokani. Trusted products evaluation. Communications of the ACM, 35(7):64—
76, July 1992.

David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch. An examination of federal
and commercial access control policy needs. In NIST-NCSC National Computer Security
Conference, pages 107-116, Baltimore, MD, September 20-23 1993.

David Ferraiolo and Richard Kuhn. Role-based access controls. In 15th NIST-NCSC
National Computer Security Conference, pages 554-563, Baltimore, MD, October 13-16
1992.

B. Clifford Neuman. Using Kerberos for authentication on computer networks. IEEE
Commaunications, 32(9), 1994.

Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9-19,
November 1993.

Ravi S. Sandhu. On five definitions of data integrity. In T. Keefe and C.E. Landwehr,
editors, Database Security VII: Status and Prospects. North-Holland, 1994.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control: A multi-dimensional view. In submitted for publication, 1994.

Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems. IEEE
Computer, 25(1):39-52, January 1992.

11

Biographies

RAVI SANDHU is Associate Chairman of the Information and Software Systems Engineering De-
partment at George Mason University. His principal research interests are in information systems
security particularly in access control models, database systems and distributed systems. He has
published over 75 refereed papers on these topics in journals, books and conference proceedings,
and teaches several graduate-level security courses at GMU. He has chaired and served on numerous
conference committees in the security arena. He is a founder of the ACM Conference on Computer
and Communications Security, and is presently serving as its Program Co-Chair for 1994. Ravi
Sandhu received the BTech degree in Electrical Engineering from IIT, Bombay, India, the MTech
degree in Computer Technology from IIT, Delhi, India, and the MS and PhD degrees in Computer
Science from Rutgers University, New Brunswick, NJ.

PIERANGELA SAMARATT is an Assistant Professor of Computer Science at the University of
Milan in Milan, Italy. Her main research interests are in information systems security, database
security, authorization models, and databases. She has published several papers on these topics.
She has been a visiting researcher at the University of Stanford, CA (USA) and at George Mason
University, VA (USA). She is currently serving as the Italian representative in the IFIP TC-11
(Technical Committee 11 on Security and Protection in Information Processing Systems). She is
co-author of the book “Database Security” (Addison-Wesley, 1994). Pierangela Samarati received
the doctoral degree in Computer Science from University of Milan in 1988.

12

Authorization
Database

&Y -

Security Administrator

i
AUTHENTICATION / ACCESS CONTROL

Reference

Monitor >

Objects

~
~ —
~ —~
~ ~

g

~
gd;?! AUDITING

Figure 1: Access Control and Other Security Services

13

John

Alice

Bob

File1 File2 File3 File4 Account 1l Account 2
Own Own Inquiry
R R Credit
w w
Own Inquiry Inquiry
R R W R Debit Credit
w
Own Inquiry
R R R Debit
w w

Figure 2: An Access Matrix

14

Filel —» John Alice Bob
Own
R R vF\{/
W
o— o—
File2 ——» Alice Bob
Own
R R
W
o—|
File3 —» John Alice
Own
R W
W
o—|
File4d ——» Alice Bob
Own
R R
W
p—

Figure 3: Access Control Lists for Files in Figure 1

15

John——»{ FEilel File3
Own Own
R R
W W
p—
Alice ——»! File1l File2 File3 File4
Own
R R W R
W
o— o— o—
Bob ——»{ File1 File2 File4
R Own
W R R
W
o— o—

Figure 4: Capability Lists for Files in Figure 1

16

| Subject | Access mode | Object |

John Own File 1
John R File 1
John w File 1
John Own File 3
John R File 3
John w File 3
Alice R File 1
Alice Own File 2
Alice R File 2
Alice w File 2
Alice W File 3
Alice R File 4
Bob R File 1
Bob w File 1
Bob R File 2
Bob Own File 4
Bob R File 4
Bob W File 4

Figure 5: Authorization Relation for Files in Figure 1

17

All Accesses

Discretionary Role-Based

Mandatory

Policy

Figure 6: Multiple Access Control Policies

18

SUBJECTS OBJECTS

T A A

writes

writes

TS

_|
n
Speal

speal

oA
g writes

speal

2
. writes

Speal

v

Figure 7: Controlling Information Flow for Secrecy

\/ \/

19

Information Flow

fead§

Sa)lIM

& reads

SOLIM

i ¥
reads

Sa)LIM

SUBJECTS OBJECTS

Voo

Figure 8: Controlling Information Flow for Integrity

20

MO|4 UoIew.ou|

Engineer

TN

Hardware Software
Engineer Engineer

\/

Supervising
Engineer

Figure 9: A Role Inheritance Hierarchy

21

