
341

Chapter 13
Design Principles

FALSTAFF: If I had a thousand sons, the
first human principle I would teach them should

be, to forswear thin potations and to addict
themselves to sack.

—The Second Part of King Henry the Fourth, IV, iii, 133–136.

Specific design principles underlie the design and implementation of mechanisms for
supporting security policies. These principles build on the ideas of simplicity and
restriction. This chapter discusses those basic ideas and eight design principles.

13.1 Overview

Saltzer and Schroeder [865] describe eight principles for the design and implementa-
tion of security mechanisms. The principles draw on the ideas of simplicity and
restriction.

Simplicity makes designs and mechanisms easy to understand. More impor-
tantly, less can go wrong with simple designs. Minimizing the interaction of system
components minimizes the number of sanity checks on data being transmitted from
one component to another.

EXAMPLE: The program sendmail reads configuration data from a binary file. System
administrators generated the binary file by “freezing,” or compiling, a text version of
the configuration file. This created three interfaces: the mechanism used to edit the text
file, the mechanism used to freeze the file, and the mechanism sendmail used to read
the frozen file. The second interface required manual intervention and was often over-
looked. To minimize this problem, sendmail checked that the frozen file was newer
than the text file. If not, it warned the user to update the frozen configuration file.

The security problem lies in the assumptions that sendmail made. For example,
the compiler would check that a particular option had an integer value. However,
sendmail would not recheck; it assumed that the compiler had done the checking.

342 Chapter 13 Design Principles

Errors in the compiler checks, or sendmail’s assumptions being inconsistent with
those of the compiler, could produce security problems. If the compiler allowed the
default UID to be a user name (say, daemon with a UID of 1), but sendmail assumed
that it was an integer UID, then sendmail would scan the string “daemon” as though
it were an integer. Most input routines would recognize that this string is not an inte-
ger and would default the return value to 0. Thus, sendmail would deliver mail with
the root UID rather than with the desired daemon UID.

Simplicity also reduces the potential for inconsistencies within a policy or set
of policies.

EXAMPLE: A college rule requires any teaching assistant who becomes aware of
cheating to report it. A different rule ensures the privacy of student files. A TA con-
tacts a student, pointing out that some files for a program were not submitted. The
student tells the TA that the files are in the student’s directory, and asks the TA to get
the files. The TA does so, and while looking for the files notices two sets, one with
names beginning with “x” and the other set not. Unsure of which set to use, the TA
takes the first set. The comments show that they were written by a second student.
The TA gets the second set, and the comments show that they were written by the
first student. On comparing the two sets, the TA notes that they are identical except
for the names in the comments. Although concerned about a possible countercharge
for violation of privacy, the TA reports the student for cheating. As expected, the stu-
dent charges the TA with violating his privacy by reading the first set of files. The
rules conflict. Which charge or charges should be sustained?

Restriction minimizes the power of an entity. The entity can access only infor-
mation it needs.

EXAMPLE: Government officials are denied access to information for which they
have no need (the “need to know” policy). They cannot communicate that which they
do not know.

Entities can communicate with other entities only when necessary, and in as
few (and narrow) ways as possible.

EXAMPLE: All communications with prisoners are monitored. Prisoners can com-
municate with people on a list (given to the prison warden) through personal visits or
mail, both of which are monitored to prevent the prisoners from receiving contraband
such as files for cutting through prison bars or weapons to help them break out. The
only exception to the monitoring policy is when prisoners meet with their attorneys.
Such communications are privileged and so cannot be monitored.

“Communication” is used in its widest possible sense, including that of
imparting information by not communicating.

13.2 Design Principles 343

EXAMPLE: Bernstein and Woodward, the reporters who broke the Watergate scan-
dal, describe an attempt to receive information from a source without the source
directly answering the question. They suggested a scheme in which the source would
hang up if the information was inaccurate and remain on the line if the information
was accurate. The source remained on the line, confirming the information [85].

13.2 Design Principles

The principles of secure design discussed in this section express common-sense
applications of simplicity and restriction in terms of computing. We will discuss
detailed applications of these principles throughout the remainder of Part 5, and in
Part 8, “Practicum.” However, we will mention examples here.

13.2.1 Principle of Least Privilege

This principle restricts how privileges are granted.

Definition 13–1. The principle of least privilege states that a subject should
be given only those privileges that it needs in order to complete its task.

If a subject does not need an access right, the subject should not have that right.
Furthermore, the function of the subject (as opposed to its identity) should control the
assignment of rights. If a specific action requires that a subject’s access rights be aug-
mented, those extra rights should be relinquished immediately on completion of the
action. This is the analogue of the “need to know” rule: if the subject does not need
access to an object to perform its task, it should not have the right to access that object.
More precisely, if a subject needs to append to an object, but not to alter the information
already contained in the object, it should be given append rights and not write rights.

In practice, most systems do not have the granularity of privileges and permis-
sions required to apply this principle precisely. The designers of security mecha-
nisms then apply this principle as best they can. In such systems, the consequences
of security problems are often more severe than the consequences for systems that
adhere to this principle.

EXAMPLE: The UNIX operating system does not apply access controls to the user
root. That user can terminate any process and read, write, or delete any file. Thus,
users who create backups can also delete files. The administrator account on Win-
dows has the same powers.

This principle requires that processes should be confined to as small a protec-
tion domain as possible.

344 Chapter 13 Design Principles

EXAMPLE: A mail server accepts mail from the Internet and copies the messages
into a spool directory; a local server will complete delivery. The mail server needs
the rights to access the appropriate network port, to create files in the spool directory,
and to alter those files (so it can copy the message into the file, rewrite the delivery
address if needed, and add the appropriate “Received” lines). It should surrender the
right to access the file as soon as it has finished writing the file into the spool direc-
tory, because it does not need to access that file again. The server should not be able
to access any user’s files, or any files other than its own configuration files.

13.2.2 Principle of Fail-Safe Defaults

This principle restricts how privileges are initialized when a subject or object is created.

Definition 13–2. The principle of fail-safe defaults states that, unless a sub-
ject is given explicit access to an object, it should be denied access to that
object.

This principle requires that the default access to an object is none. Whenever
access, privileges, or some security-related attribute is not explicitly granted, it
should be denied. Moreover, if the subject is unable to complete its action or task, it
should undo those changes it made in the security state of the system before it termi-
nates. This way, even if the program fails, the system is still safe.

EXAMPLE: If the mail server is unable to create a file in the spool directory, it should
close the network connection, issue an error message, and stop. It should not try to
store the message elsewhere or to expand its privileges to save the message in
another location, because an attacker could use that ability to overwrite other files or
fill up other disks (a denial of service attack). The protections on the mail spool
directory itself should allow create and write access only to the mail server and read
and delete access only to the local server. No other user should have access to the
directory.

In practice, most systems will allow an administrator access to the mail spool
directory. By the principle of least privilege, that administrator should be able to access
only the subjects and objects involved in mail queueing and delivery. As we have seen,
this constraint minimizes the threats if that administrator’s account is compromised.
The mail system can be damaged or destroyed, but nothing else can be.

13.2.3 Principle of Economy of Mechanism

This principle simplifies the design and implementation of security mechanisms.

Definition 13–3. The principle of economy of mechanism states that security
mechanisms should be as simple as possible.

13.2 Design Principles 345

If a design and implementation are simple, fewer possibilities exist for errors.
The checking and testing process is less complex, because fewer components and
cases need to be tested. Complex mechanisms often make assumptions about the sys-
tem and environment in which they run. If these assumptions are incorrect, security
problems may result.

EXAMPLE: The ident protocol [861] sends the user name associated with a process
that has a TCP connection to a remote host. A mechanism on host A that allows
access based on the results of an ident protocol result makes the assumption that the
originating host is trustworthy. If host B decides to attack host A, it can connect and
then send any identity it chooses in response to the ident request. This is an example
of a mechanism making an incorrect assumption about the environment (specifically,
that host B can be trusted).

Interfaces to other modules are particularly suspect, because modules often
make implicit assumptions about input or output parameters or the current system
state; should any of these assumptions be wrong, the module’s actions may produce
unexpected, and erroneous, results. Interaction with external entities, such as other
programs, systems, or humans, amplifies this problem.

EXAMPLE: The finger protocol transmits information about a user or system [1072].
Many client implementations assume that the server’s response is well-formed. How-
ever, if an attacker were to create a server that generated an infinite stream of charac-
ters, and a finger client were to connect to it, the client would print all the characters.
As a result, log files and disks could be filled up, resulting in a denial of service
attack on the querying host. This is an example of incorrect assumptions about the
input to the client.

13.2.4 Principle of Complete Mediation

This principle restricts the caching of information, which often leads to simpler
implementations of mechanisms.

Definition 13–4. The principle of complete mediation requires that all
accesses to objects be checked to ensure that they are allowed.

Whenever a subject attempts to read an object, the operating system should
mediate the action. First, it determines if the subject is allowed to read the object. If
so, it provides the resources for the read to occur. If the subject tries to read the
object again, the system should check that the subject is still allowed to read
the object. Most systems would not make the second check. They would cache the
results of the first check and base the second access on the cached results.

346 Chapter 13 Design Principles

EXAMPLE: When a UNIX process tries to read a file, the operating system deter-
mines if the process is allowed to read the file. If so, the process receives a file
descriptor encoding the allowed access. Whenever the process wants to read the
file, it presents the file descriptor to the kernel. The kernel then allows the access.

If the owner of the file disallows the process permission to read the file after
the file descriptor is issued, the kernel still allows access. This scheme violates the
principle of complete mediation, because the second access is not checked. The
cached value is used, resulting in the denial of access being ineffective.

EXAMPLE: The Domain Name Service (DNS) caches information mapping host
names into IP addresses. If an attacker is able to “poison” the cache by implanting
records associating a bogus IP address with a name, one host will route connections
to another host incorrectly. Section 14.6.1.2 discusses this in more detail.

13.2.5 Principle of Open Design

This principle suggests that complexity does not add security.

Definition 13–5. The principle of open design states that the security of a
mechanism should not depend on the secrecy of its design or implementation.

Designers and implementers of a program must not depend on secrecy of
the details of their design and implementation to ensure security. Others can fer-
ret out such details either through technical means, such as disassembly and
analysis, or through nontechnical means, such as searching through garbage
receptacles for source code listings (called “dumpster-diving”). If the strength of
the program’s security depends on the ignorance of the user, a knowledgeable
user can defeat that security mechanism. The term “security through obscurity”
captures this concept exactly.

This is especially true of cryptographic software and systems. Because cryp-
tography is a highly mathematical subject, companies that market cryptographic
software or use cryptography to protect user data frequently keep their algorithms
secret. Experience has shown that such secrecy adds little if anything to the security
of the system. Worse, it gives an aura of strength that is all too often lacking in the
actual implementation of the system.

Keeping cryptographic keys and passwords secret does not violate this principle,
because a key is not an algorithm. However, keeping the enciphering and deciphering
algorithms secret would violate it.

Issues of proprietary software and trade secrets complicate the application
of this principle. In some cases, companies may not want their designs made
public, lest their competitors use them. The principle then requires that the
design and implementation be available to people barred from disclosing it out-
side the company.

13.2 Design Principles 347

EXAMPLE: The Content Scrambling System (CSS)
is a cryptographic algorithm that protects DVD
movie disks from unauthorized copying. The DVD
disk has an authentication key, a disk key, and a title
key. The title key is enciphered with the disk key. A
block on the DVD contains several copies of the disk
key, each enciphered by a different player key, and a
checksum of the disk key. When a DVD is inserted
into a DVD player, the algorithm reads the authenti-
cation key. It then deciphers the disk keys using the
DVD player’s unique key. When it finds a deciphered
key with the correct hash, it uses that key to decipher
the title key, and it uses the title key to decipher the
movie [971]. (Figure 13–1 shows the layout of the
keys.) The authentication and disk keys are not
located in the file containing the movie, so if one
copies the file, one still needs the DVD disk in the
DVD player to be able to play the movie.

In 1999, a group in Norway acquired a (soft-
ware) DVD playing program that had an unenci-
phered key. They also derived an algorithm
completely compatible with the CSS algorithm from
the software. This enabled them to decipher any
DVD movie file. Software that could perform these functions rapidly became avail-
able throughout the Internet, much to the discomfort of the DVD Copyright Control
Association, which promptly sued to prevent the code from being made public [783,
798]. As if to emphasize the problems of providing security by concealing algo-
rithms, the plaintiff’s lawyers filed a declaration containing the source code of an
implementation of the CSS algorithm. When they realized this, they requested that
the declaration be sealed from public view. By then, the declaration had been posted
on several Internet sites, including one that had more than 21,000 downloads of the
declaration before the court sealed it [671].

13.2.6 Principle of Separation of Privilege

This principle is restrictive because it limits access to system entities.

Definition 13–6. The principle of separation of privilege states that a system
should not grant permission based on a single condition.

This principle is equivalent to the separation of duty principle discussed in
Section 6.1. Company checks for more than $75,000 must be signed by two officers
of the company. If either does not sign, the check is not valid. The two conditions are
the signatures of both officers.

hash(KD)

E(KD, KPi)

KA

...

E(KD, KPn)

E(KT, KD)

Figure 13–1 DVD
key layout. KA is the
authentication key, KT
the title key, KD the disk
key, and KPi the key for
DVD player i. The disk
key is enciphered once
for each player key.

348 Chapter 13 Design Principles

Similarly, systems and programs granting access to resources should do so
only when more than one condition is met. This provides a fine-grained control over
the resource as well as additional assurance that the access is authorized.

EXAMPLE: On Berkeley-based versions of the UNIX operating system, users are not
allowed to change from their accounts to the root account unless two conditions are
met. The first condition is that the user knows the root password. The second condi-
tion is that the user is in the wheel group (the group with GID 0). Meeting either con-
dition is not sufficient to acquire root access; meeting both conditions is required.

13.2.7 Principle of Least Common Mechanism

This principle is restrictive because it limits sharing.

Definition 13–7. The principle of least common mechanism states that mech-
anisms used to access resources should not be shared.

Sharing resources provides a channel along which information can be trans-
mitted, and so such sharing should be minimized. In practice, if the operating system
provides support for virtual machines, the operating system will enforce this privi-
lege automatically to some degree (see Chapter 17, “Confinement Problem”). Other-
wise, it will provide some support (such as a virtual memory space) but not complete
support (because the file system will appear as shared among several processes).

EXAMPLE: A Web site provides electronic commerce services for a major company.
Attackers want to deprive the company of the revenue it obtains from that Web site.
They flood the site with messages and tie up the electronic commerce services.
Legitimate customers are unable to access the Web site and, as a result, take their
business elsewhere.

Here, the sharing of the Internet with the attackers’ sites caused the attack to
succeed. The appropriate countermeasure would be to restrict the attackers’ access to
the segment of the Internet connected to the Web site. Techniques for doing this
include proxy servers such as the Purdue SYN intermediary [893] or traffic throttling
(see Section 26.4, “Availability and Network Flooding”). The former targets suspect
connections; the latter reduces the load on the relevant segment of the network
indiscriminately.

13.2.8 Principle of Psychological Acceptability

This principle recognizes the human element in computer security.

Definition 13–8. The principle of psychological acceptability states that
security mechanisms should not make the resource more difficult to access
than if the security mechanisms were not present.

13.3 Summary 349

Configuring and executing a program should be as easy and as intuitive as
possible, and any output should be clear, direct, and useful. If security-related soft-
ware is too complicated to configure, system administrators may unintentionally set
up the software in a nonsecure manner. Similarly, security-related user programs
must be easy to use and must output understandable messages. If a password is
rejected, the password changing program should state why it was rejected rather than
giving a cryptic error message. If a configuration file has an incorrect parameter, the
error message should describe the proper parameter.

EXAMPLE: The ssh program [1065] allows a user to set up a public key mechanism
for enciphering communications between systems. The installation and configuration
mechanisms for the UNIX version allow one to arrange that the public key be stored
locally without any password protection. In this case, one need not supply a pass-
word to connect to the remote system, but will still obtain the enciphered connection.
This mechanism satisfies the principle of psychological acceptability.

On the other hand, security requires that the messages impart no unnecessary
information.

EXAMPLE: When a user supplies the wrong password during login, the system
should reject the attempt with a message stating that the login failed. If it were to say
that the password was incorrect, the user would know that the account name was
legitimate. If the “user” were really an unauthorized attacker, she would then know
the name of an account for which she could try to guess a password.

In practice, the principle of psychological acceptability is interpreted to mean
that the security mechanism may add some extra burden, but that burden must be
both minimal and reasonable.

EXAMPLE: A mainframe system allows users to place passwords on files. Accessing
the files requires that the program supply the password. Although this mechanism
violates the principle as stated, it is considered sufficiently minimal to be acceptable.
On an interactive system, where the pattern of file accesses is more frequent and
more transient, this requirement would be too great a burden to be acceptable.

13.3 Summary

The design principles discussed in this chapter are fundamental to the design and
implementation of security mechanisms. They encompass not only technical details
but also human interaction. Several principles come from nontechnical environ-
ments, such as the principle of least privilege. Each principle involves the restriction

350 Chapter 13 Design Principles

of privilege according to some criterion, or the minimization of complexity to make
the mechanisms less likely to fail.

13.4 Research Issues

These principles pervade all research touching on the design and implementation of
secure systems. The principle of least privilege raises the issue of granularity of priv-
ilege. Is a “write” privilege sufficient, or should it be fragmented—for example, into
“write” and “write at the end” or “append,” or into the ability to write to specific
blocks? How does the multiplicity of rights affect system administration and security
management? How does it affect architecture and performance? How does it affect
the user interface and the user’s model of the system?

Least common mechanism problems arise when dealing with denial of service
attacks, because such attacks exploit shared media. The principle of least common
mechanism plays a role in handling covert channels, which are discussed further in
Chapter 17.

Separation of privilege arises in the creation of user and system roles. How
much power should administrative accounts have? How should they work together?
These issues arise in role-based access control, which is discussed in Section 7.4.

The principle of complete mediation runs counter to the philosophy of cach-
ing. One caches data to keep from having to retrieve the information when it is next
needed, but complete mediation requires the retrieval of access permissions. How are
these conflicting forces balanced in practice?

Research in software and systems design and implementation studies the
application of the principle of economy of mechanism. How can interfaces be made
simple and consistent? How can the various design paradigms lead to better-crafted,
simpler software and systems?

Whether “open source” software (software the source of which is publicly
available) is more secure than other software is a complex question. Analysts can
check open source software for security problems more easily than they can software
for which no source is available. Knowing that one’s coding will be available for
public scrutiny should encourage programmers to write better, tighter code. On the
other hand, attackers can also look at the source code for security flaws, and various
pressures (such as time to market) weigh against careful coding. Furthermore, the
debate ignores security problems introduced by misconfigured software, or software
used incorrectly.

Experimental data for the debate about the efficacy of open source software is
lacking. An interesting research project would be to design an experiment that would
provide evidence either for or against the proposition that if source code for software
is available, then that software has (or causes) fewer security problems than software
for which source code is not available. Part of the research would be to determine
how to make this question precise, what metrics and statistical techniques should be
used to analyze the data, and how the data should be collected.

13.6 Exercises 351

13.5 Further Reading

Many papers discuss the application of these principles to security mechanisms. Suc-
ceeding chapters will present references for this aspect of the principles. Other papers
present different sets of principles. These papers are generally specializations or alter-
native views of Saltzer and Schroeder’s principles, tailored for particular environments.
Abadi and Needham [2] and Anderson and Needham [32] discuss principles for the
design of cryptographic protocols; Syverson discusses their limits [986]. Moore [729]
and Abadi [1] describe problems in cryptographic protocols. Wood [1057, 1058]
discusses principles for secure systems design with an emphasis on groupware.
Bonyun [133] focuses on architectural principles. Landwehr and Goldschlag [615]
present principles for Internet security.

ch_13.fm Page 351 Thursday, October 31, 2002 10:47 AM

