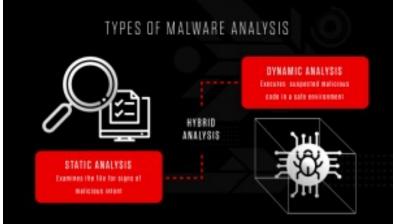
School of

Engineering and Computer Science

Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 473 T1 2022 Malware and Reverse Engineering

Malware Analysis in Virtual Machines


Chapters 2&3: "Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software", Michael Sikorski and Andrew Honig, 2012

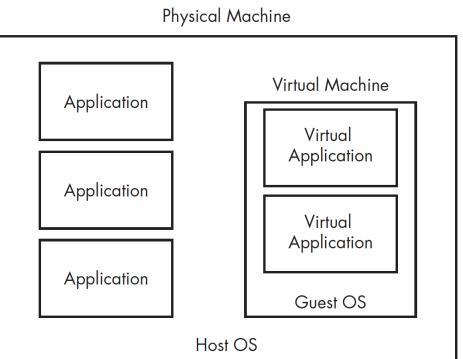
Dynamic Analysis

- Running malware **deliberately**, while monitoring the results
- Requires a **safe environment**
- Must prevent malware from spreading to production machines

 Real machines can be airgapped –no network connection to the Internet or to other machines

Real Machines

Disadvantages

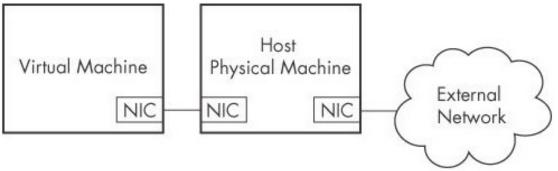

- No Internet connection, so parts of the malware may not work
- Can be <u>difficult to remove</u> malware, so re-imaging the machine will be necessary

Advantage

 Some malware detects <u>virtual machines</u> and won't run properly in one

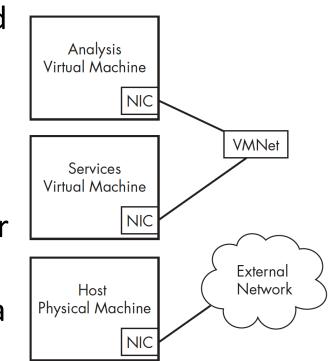
Virtual Machines

 The most common method We'll do it that way • This protects the host machine from the malware • Except for a *few very rare cases* of malware that escape the virtual machine and infect the host


VMware Workstation Player/Fusion

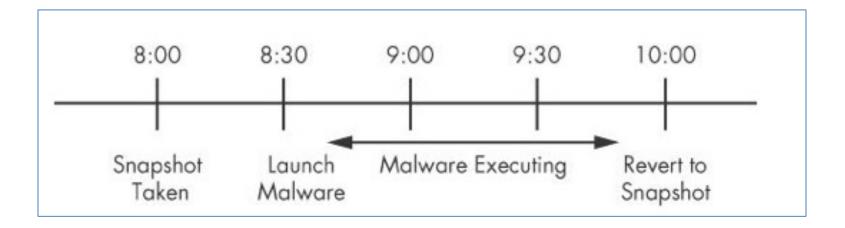
- Free for education
- Cannot take snapshots

Configuring VMware


- You can disable networking by disconnecting the virtual network adapter
- You may want to enable the network connectivity when analysing malware (why?)
- Host-only networking allows network traffic to the host but not the Internet

CYBR473-2023T1: Malware and Reverse Engineering

Connecting Malware to the Internet


- NAT mode lets VMs see each other and the Internet, but puts a virtual router between the VM and the LAN
- **Bridged** networking connects the VM directly to the LAN
- Can allow malware to do some harm or spread – controversial
- You could send spam or participate in a DDoS attack

Peripheral Devices

- Can be connected to one but not both
- Issues with connecting peripheral devices, e.g., USB, automatically to the virtual machine
- Is there any potential issue if we do not connect <u>any</u> peripheral device to the virtual machine?

Snapshots

Snapshot timeline

Risks of Using VMware for Malware Analysis

- Malware may <u>detect</u> that it is in a VM and run differently
- VMware has <u>bugs</u>: malware may crash or exploit it
- Malware may <u>spread</u> or affect the host don't use a sensitive host machine
- All the textbook samples are harmless

BASIC DYNAMIC ANALYSIS

• •

000 000

Why Perform Dynamic Analysis?

- Static analysis can reach a <u>dead-end</u>, due to

 Obfuscation
 - \circ Packing

• Examiner has exhausted the available static analysis techniques

 Dynamic analysis is efficient and will show you exactly what the malware does
 But there still some limitations with this approach.

• But there still some <u>limitations</u> with this approach!

SANDBOXES

•

Sandbox

- The quick-and-dirty approach
- All-in-one software for basic dynamic analysis
- Virtualized environment that simulates network services
- Examples: Norman Sandbox, GFI Sandbox, Anubis, Joe Sandbox, ThreatExpert, BitBlaze, Comodo Instant Malware Analysis
- They are expensive but easy to use
- They produce a nice PDF report of results

GFI Sandbox sample results for win32XYZ.exe

GFI SandBox Analysis # 2307 Sample: win32XYZ.exe (56476e02c29e5dbb9286b5f7b9e708f5)	
Table of Contents	
Analysis Summary	3
Analysis Summary	3 3
File Activity	1
Stored Modified Files	1 5
Created Mutexes	5
Registry Activity	3
Set Values	5 7
Network Events	7
Network Traffic	3
DNS Requests	, 0

Sandbox Drawbacks

- No command-line options
- May not record all events (e.g. sleep)
- Other drawbacks
 - $\,\circ\,$ Malware often detects when it is running in a virtual machine
 - Some malware requires the presence of <u>certain registry keys</u> or files on the system that might not be found in the sandbox
 - If the malware is a <u>DLL</u>, certain exported functions will not be invoked properly
 - The sandbox environment OS may not be correct for the malware
 - A sandbox cannot tell you what the malware does

RUNNING MALWARE

•

•

Launching DLLs


- EXE files can be run directly, <u>but DLLs can't</u>
- Use Rundll32.exe (included in Windows) rundll32.exe DLLname, Export arguments
- The *Export* value is one of the exported functions you found in Dependency Walker, PEview, or PE Explorer.

Launching DLLs (cont.)

• Example

 rip.dll has these exports: Install and Uninstall rundll32.exe rip.dll, Install

- Some functions use ordinal values instead of names, like rundll32.exe xyzzy.dll, #5
- It's also possible to modify the PE header and convert a DLL into an EXE

END OF LECTURE. THANK YOU.