
School of

Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 473 T1 2023
Malware and Reverse Engineering

A Crash Course in x86 Disassembly
Chapters 4: “Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software”, Michael Sikorski and Andrew Honig, 2012

CYBR473-2023T1: Malware and Reverse Engineering

Basic Techniques
• Basic static analysis

o Looks at malware from the outside

• Basic dynamic analysis
o Only shows you how the malware operates in one case

• Disassembly
o View code of malware & figure out what it does

slide 1

LEVELS OF
ABSTRACTION

CYBR473-2023T1: Malware and Reverse Engineering

Code-level Example

slide 3

CYBR473-2023T1: Malware and Reverse Engineering

Six Levels of Abstraction
• Hardware

• Microcode

• Machine code

• Low-level languages

• High-level languages

• Interpreted languages
slide 4

CYBR473-2023T1: Malware and Reverse Engineering

Hardware, Microcode and Machine Code
• Hardware

o Digital circuits
o XOR, AND, OR, NOT gates
o Cannot be easily manipulated by software

• Microcode
o Also called firmware
o Only operates on specific hardware it was designed for
o Not usually important for malware analysis

• Machine Code
o Tell the processor to do something
o Created when a program written in a high-level language is compiled

slide 5

CYBR473-2023T1: Malware and Reverse Engineering

Languages
• Low-level

o Human-readable version of processor's instruction set
o Assembly language

§ PUSH, POP, NOP, MOV, JMP ...
o Disassembler generates assembly language
o This is the highest level language that can be reliably recovered from

malware when source code is unavailable
• High-level

o Most programmers use these
o C, C++, etc.
o Converted to machine code by a compiler

slide 6

CYBR473-2023T1: Malware and Reverse Engineering

Languages (cont.)
• Interpreted

o Highest level
o Java, C#, Perl, .NET, Python
o Code is not compiled into machine code
o It is translated into bytecode

§ An intermediate representation
§ Independent of hardware and OS
§ Bytecode executes in an interpreter, which translates bytecode into

machine language on the fly at runtime
§ Ex: Java Virtual Machine

slide 7

REVERSE
ENGINEERING

CYBR473-2023T1: Malware and Reverse Engineering

Disassembly
• Malware on a disk is in binary form at the machine code

level

• Disassembly converts the binary form to assembly
language

• IDA Pro is the most popular disassembler

slide 9

CYBR473-2023T1: Malware and Reverse Engineering

Assembly Language

• Different versions for each type of processor
• x86 – 32-bit Intel (most common)
• x64 – 64-bit Intel
• SPARC, PowerPC, MIPS, ARM – others
• Windows runs on x86 or x64
• x64 machines can run x86 programs
• Most malware is designed for x86

slide 10

THE X86
ARCHITECTURE

CYBR473-2023T1: Malware and Reverse Engineering

Von Neumann Architecture
• CPU (Central Processing

Unit) executes code

• RAM stores all data and
code

• I/O system interfaces with
the hard disk, keyboard,
monitor, etc.

slide 12

CYBR473-2023T1: Malware and Reverse Engineering

CPU Components
• Control unit

o Fetches instructions from RAM using a register named the
instruction pointer

• Registers
o Data storage within the CPU
o Faster than RAM

• ALU (Arithmetic Logic Unit)
o Executes an instruction and places results in registers or RAM

slide 13

CYBR473-2023T1: Malware and Reverse Engineering

Main Memory (RAM)

slide 14

CYBR473-2023T1: Malware and Reverse Engineering

Data and Code
• Data

o Values placed in RAM when a program loads
o Sometimes these values are called static

§ They may not change while the program is running
o Sometimes these values are called global

§ Available to any part of the program
• Code

o Instructions for the CPU
o Controls what the program does

slide 15

CYBR473-2023T1: Malware and Reverse Engineering

Heap and Stack
• Heap

o Dynamic memory
o Changes frequently during program execution
o Program creates (allocates) new values, and eliminates (frees)

them when they are no longer needed
• Stack

o Local variables and parameters for functions
o Helps programs flow

slide 16

CYBR473-2023T1: Malware and Reverse Engineering

Instructions

• Mnemonic followed by operands
• mov ecx 0x42

o Move into Extended C register the value 42 (hex)

• mov ecx is 0xB9 in hexadecimal
• The value 42 is 0x4200000000
• In binary, this instruction is

0xB942000000

slide 17

CYBR473-2023T1: Malware and Reverse Engineering

Assembly Language Instructions
• We're using the Intel format

o AT&T format reverses the source and destination positions

slide 18

CYBR473-2023T1: Malware and Reverse Engineering

Endianness
• Big-Endian

o Most significant byte first
o 0x42 as a 64-bit value would be 0x00000042

• Little-Endian
o Least significant byte first
o 0x42 as a 64-bit value would be 0x42000000

• Network data uses big-endian
o 127.0.0.1, or in hex, 7F 00 00 01
o Sent over the network as 0x7F000001
o Stored in RAM as 0x0100007F

• x86 programs use little-endian
slide 19

CYBR473-2023T1: Malware and Reverse Engineering

Operands
• Immediate

o Fixed values like 0x42

• Register
o eax, ebx, ecx, and so on

• Memory address
o Denoted with brackets, like [eax]

slide 20

CYBR473-2023T1: Malware and Reverse Engineering

Registers
• The x86

registers

slide 21

CYBR473-2023T1: Malware and Reverse Engineering

Registers (cont.)

• General registers
o Used by the CPU during execution

• Segment registers
o Used to track sections of memory

• Status flags
o Used to make decisions

• Instruction pointer
o Address of next instruction to execute

slide 22

CYBR473-2023T1: Malware and Reverse Engineering

Size of Registers
• General registers are all 32 bits in size

o Can be referenced as either 32bits (edx) or 16 bits (dx)

• Four registers (eax, ebx,
ecx, edx) can also be
referenced as 8-bit values
o AL is lowest 8 bits
o AH is higher 8 bits

slide 23

CYBR473-2023T1: Malware and Reverse Engineering

General Registers

• Typically store data or memory addresses
• Normally interchangeable
• Some instructions reference specific registers
• Multiplication and division use EAX and EDX
• Conventions

o Compilers use registers in consistent ways
o EAX contains the return value for function calls

slide 24

CYBR473-2023T1: Malware and Reverse Engineering

Flags
• EFLAGS is a status register

• 32 bits in size

• Each bit is a flag

• SET (1) or Cleared (0)

slide 25

CYBR473-2023T1: Malware and Reverse Engineering

Important Flags
• ZF Zero flag

o Set when the result of an operation is zero
• CF Carry flag

o Set when result is too large or small for destination
• SF Sign Flag

o Set when result is negative, or when most significant bit is set
after arithmetic

• TF Trap Flag
o Used for debugging—if set, processor executes only one

instruction at a time

slide 26

CYBR473-2023T1: Malware and Reverse Engineering

EIP (Extended Instruction Pointer)
• Contains the memory address of the next instruction to

be executed

• If EIP contains wrong data, the CPU will fetch non-
legitimate instructions and crash

• Buffer overflows target EIP

slide 27

SIMPLE
INSTRUCTIONS

CYBR473-2023T1: Malware and Reverse Engineering

Simple Instructions
• mov destination, source

o Moves data from one location to another

• We use Intel format with destination first

• Remember indirect addressing
o [ebx] means the memory location pointed to by EBX

slide 29

CYBR473-2023T1: Malware and Reverse Engineering

mov Instruction Examples

slide 30

CYBR473-2023T1: Malware and Reverse Engineering

Load Effective Address (lea)
• lea destination, source

o lea eax, [ebx+8]
o Puts ebx + 8 into eax

• Compare
o mov eax, [ebx+8]
o Moves the data at location ebx+8 into eax

slide 31

CYBR473-2023T1: Malware and Reverse Engineering

EBX Register Used to Access Memory
• EAX and EBX values (left)
• Information contained in

memory (right)
• EBX is set to 0xB30040
• Value at 0xB30048 is

0x20
• mov eax, [ebx+8]

o Puts 0x20 into EAX
• lea eax, [ebx+8]

o Puts 0xB30048 into EAX

slide 32

CYBR473-2023T1: Malware and Reverse Engineering

Arithmetic
• sub Subtracts

• add Adds

• inc Increments

• dec Decrements

• mul Multiplies

• div Divides
slide 33

CYBR473-2023T1: Malware and Reverse Engineering

NOP
• Does nothing

• 0x90

• Commonly used as a NOP Sled

• Allows attackers to run code even if they are imprecise
about jumping to it

slide 34

CYBR473-2023T1: Malware and Reverse Engineering

The Stack
• Memory for functions, local variables, and flow control
• Last in, First out
• ESP (Extended Stack Pointer) – top of stack
• EBP (Extended Base Pointer) – bottom of stack
• PUSH puts data on the stack
• POP takes data off the stack
• Other Stack Instructions

o To enter a function
§ Call or Enter

o To exit a function
§ Leave or Ret

slide 35

CYBR473-2023T1: Malware and Reverse Engineering

Function Calls
• Small programs that do one thing and return, like printf()

• Prologue
o Instructions at the start of a function that prepare stack and

registers for the function to use

• Epilogue
o Instructions at the end of a function that restore the stack and

registers to their state before the function was called

slide 36

CYBR473-2023T1: Malware and Reverse Engineering

Stack Frames
• x86 stack layout

slide 37

CYBR473-2023T1: Malware and Reverse Engineering

Conditionals and Brancing
• Conditional

o test
§ Compares two values the way AND does, but does not alter them
§ test eax, eax

– Sets Zero Flag if eax is zero
o cmp eax, ebx

§ Sets Zero Flag if the arguments are equal
• Branching

o jz loc
§ Jump to loc if the Zero Flag is set

o jnz loc
§ Jump to loc if the Zero Flag is cleared

slide 38

CYBR473-2023T1: Malware and Reverse Engineering

C Main Method
• Every C program has a main() function

• int main(int argc, char** argv)
o argc contains the number of arguments on the command line
o argv is a pointer to an array of names containing the arguments

slide 39

CYBR473-2023T1: Malware and Reverse Engineering

Example
• cp foo bar

o argc = 3

o argv[0] = cp

o argv[1] = foo

o argv[2] = bar

slide 40

END OF LECTURE. THANK YOU.

