
School of

Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 473 T1 2023
Malware and Reverse Engineering

Analysing Malicious Windows Programs (B)
Chapter 7: “Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software”, Michael Sikorski and Andrew Honig, 2012

PROCESSES

CYBR473-2023T1: Malware and Reverse Engineering

Processes

• Every program being executed by Windows is a process
• Each process has its own resources

o Handles, memory

• Each process has one or more threads
• Older malware ran as an independent process
• Newer malware executes its code as part of another

process

slide 2

CYBR473-2023T1: Malware and Reverse Engineering

Many Processes Run at Once

slide 3

CYBR473-2023T1: Malware and Reverse Engineering

Memory Management
• Each process uses resources, like CPU, file system, and

memory

• OS allocates memory to each process

• Two processes accessing the same memory address
actually access different locations in RAM
o Virtual address space

slide 4

CYBR473-2023T1: Malware and Reverse Engineering

Creating a New Process
• CreateProcess

o Can create a simple remote shell with one function call
o STARTUPINFO parameter contains handles for standard input, standard output,

and standard error streams
§ Can be set to a socket, creating a

remote shell

• Example: create a Shell
o Loads socket handle, StdError,

StdOutput and StdInput into
lpProcessInformation

slide 5

CYBR473-2023T1: Malware and Reverse Engineering

Code to Create a Shell (cont.)
• CommandLine contains the command line
• It's executed when CreateProcess is called

slide 6

THREADS

CYBR473-2023T1: Malware and Reverse Engineering

Threads
• Processes are containers

o Each process contains one or more threads

• Threads are what Windows actually executes

• Threads
o Independent sequences of instructions
o Executed by CPU without waiting for other threads
o Threads within a process share the same memory space
o Each thread has its own registers and stack

slide 8

CYBR473-2023T1: Malware and Reverse Engineering

Thread Context
• When a thread is running, it has complete control of the CPU
• Other threads cannot affect the state of the CPU
• When a thread changes a register, it does not affect any

other threads
• When the OS switches to another thread, it saves all CPU

values in a structure called the thread context

• Creating a thread
o CreateThread

§ The caller specified a start address, also called a start function

slide 9

CYBR473-2023T1: Malware and Reverse Engineering

How Malware Uses Threads
• Use CreateThread to load a malicious DLL into a process

• Create two threads, for input and output
o Used to communicate with a running application

slide 10

CYBR473-2023T1: Malware and Reverse Engineering

Interprocess Coordination with Mutexes
• Mutexes are global objects that coordinate multiple

processes and threads

• In the kernel, they are called mutants

• Mutexes often use hard-coded names which can be used
to identify malware

slide 11

CYBR473-2023T1: Malware and Reverse Engineering

Functions for Mutexes
• WaitForSingleObject

o Gives a thread access to the mutex
o Any subsequent threads attempting to gain access to it must

wait
• ReleaseMutex

o Called when a thread is done using the mutex
• CreateMutex
• OpenMutex

o Gets a handle to another process's mutex

slide 12

CYBR473-2023T1: Malware and Reverse Engineering

Making Sure Only One Copy of Malware is Running

• OpenMutex checks if HGL345 exists
• If not, it is created with CreateMutex
• test eax, eax

sets Z flag if eax is zero

slide 13

SERVICES

CYBR473-2023T1: Malware and Reverse Engineering

Services
• Services run in the background without user input

slide 15

CYBR473-2023T1: Malware and Reverse Engineering

SYSTEM Account
• Services often run as SYSTEM, which is even more

powerful than the Administrator

• Services can run automatically when Windows starts
o An easy way for malware to maintain persistence
o Persistent malware survives a restart

slide 16

CYBR473-2023T1: Malware and Reverse Engineering

Service API Functions
• OpenSCManager

o Returns a handle to the Service Control Manager

• CreateService
o Adds a new service to the Service Control Manager
o Can specify whether the service will start automatically at boot

time

• StartService
o Only used if the service is set to start manually

slide 17

CYBR473-2023T1: Malware and Reverse Engineering

Svchost.exe

• WIN32_SHARE_PROCESS
o Most common type of service

used by malware
o Stores code for service in a DLL
o Combines several services into

a single shared process named
svchost.exe

slide 18

svchost.exe in Process Explorer

CYBR473-2023T1: Malware and Reverse Engineering

Service Information in the Registry
• HKLM\System\CurrentControlSet\Services

o Start value = 0x03 for "Load on Demand"
o Type = 0x20 for WIN32_SHARE_PROCESS

slide 20

CYBR473-2023T1: Malware and Reverse Engineering

SC Command
• Included in Windows
• Gives information about Services

slide 21

COMPONENT OBJECT
MODEL (COM)

CYBR473-2023T1: Malware and Reverse Engineering

Component Object Model (COM)
• Allows different software components to share code

• Every thread that uses COM must call OleInitialize or
CoInitializeEx before calling other COM libraries

slide 23

CYBR473-2023T1: Malware and Reverse Engineering

GUIDs, CLSIDs, IIDs
• COM objects are accessed via Globally Unique Identifiers

(GUIDs)

• There are several types of GUIDs, including
o Class Identifiers (CLSIDs)

§ in Registry at HKEY_CLASSES_ROOT\CLSID

o Interface Identifiers (IIDs)
§ in Registry at HKEY_CLASSES_ROOT\Interface

slide 24

EXCEPTIONS

CYBR473-2023T1: Malware and Reverse Engineering

Exceptions
• Exceptions are caused by errors, such as division by zero

(hardware) or invalid memory access (software)

• When an exception occurs, execution transfers to the
Structured Exception Handler

slide 26

CYBR473-2023T1: Malware and Reverse Engineering

fs:0 Stores Exception Location
• FS is one of six Segment Registers

slide 27

KERNEL VS.
USER MODE

CYBR473-2023T1: Malware and Reverse Engineering

Two Privilege Levels
• Ring 0: Kernel

Mode

• Ring 3: User mode

• Rings 1 and 2 are
not used by
Windows

slide 29

CYBR473-2023T1: Malware and Reverse Engineering

User Mode
• Nearly all code runs in user mode

o Except OS and hardware drivers, which run in kernel mode
• User mode cannot access hardware directly
• Restricted to a subset of CPU instructions
• Can only manipulate hardware through the Windows API

• User mode processes
o Each process has its own memory, security permissions, and

resources
o If a user-mode program executes an invalid instruction and crashes,

Windows can reclaim the resources and terminate the program
slide 30

CYBR473-2023T1: Malware and Reverse Engineering

Calling the Kernel
• It's not possible to jump directly from user mode to the

kernel

• SYSENTER, SYSCALL, or INT 0x2E instructions use lookup
tables to locate predefined functions

slide 31

CYBR473-2023T1: Malware and Reverse Engineering

Kernel Processes
• All kernel processes share resources and memory

addresses

• Fewer security checks

• If kernel code executes an invalid instruction, the OS
crashes with the Blue Screen of Death

• Antivirus software and firewalls run in Kernel mode
slide 32

CYBR473-2023T1: Malware and Reverse Engineering

Malware in Kernel Mode
• More powerful than user-mode malware

• Auditing doesn't apply to kernel

• Almost all rootkits use kernel code

• Most malware does not use kernel mode

slide 33

THE NATIVE API

CYBR473-2023T1: Malware and Reverse Engineering

The Native API
• Lower-level interface for interacting

with Windows
• Rarely used by non-malicious programs
• Popular among malware writers

• Ntdll.dll manages interactions between
user space and the kernel

• Ntdll functions make up the Native API

slide 35

CYBR473-2023T1: Malware and Reverse Engineering

The Native API (cont.)
• Undocumented

• Intended for internal
Windows use

• Can be used by programs

• Native API calls can be more
powerful and stealthier
than Windows API calls

slide 36

CYBR473-2023T1: Malware and Reverse Engineering

Popular Native API Calls in Malware
• NTtQuerySystemInformation
• NTtQueryInformationProcess
• NTtQueryInformationThread
• NTtQueryInformationFile
• NTtQueryInformationKey

o Provide much more information than any available Win32 calls

• NtContinue
o Returns from an exception
o Can be used to transfer execution in complicated ways
o Used to confuse analysts and make a program more difficult to debug

slide 37

END OF LECTURE. THANK YOU.

