
School of 

Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 473 T1 2023 
Malware and Reverse Engineering

Debugging
Chapter 8: “Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software”, Michael Sikorski and Andrew Honig, 2012



CYBR473-2023T1: Malware and Reverse Engineering

Disassemblers vs. Debuggers

• A disassembler like IDA Pro shows the state of the 
program just before execution begins

• Debuggers show
o Every memory location
o Register
o Argument to every function
o At any point during the processing
o And let you change them

slide 1



CYBR473-2023T1: Malware and Reverse Engineering

Two Debuggers
• OllyDbg

o Most popular for malware analysis
o User-mode debugging only
o IDA Pro has a built-in debugger, but it's not as easy to use or 

powerful as Ollydbg

• Windbg
o Supports kernel-mode debugging

slide 2



CYBR473-2023T1: Malware and Reverse Engineering

Source-Level vs. Assembly-Level Debuggers
• Source-level debugger

o Usually built into the development platform
o Can set breakpoints (which stop at lines of code)
o Can step through the program one line at a time

• Assembly-level debuggers (low-level)
o Operate on assembly code rather than source code
o Malware analysts are usually forced to use them because they 

don't have source code

slide 3



CYBR473-2023T1: Malware and Reverse Engineering

Windows Crashes
• When an app crashes, 

Windows may offer to 
open it in a debugger

• Usually it uses Windbg

slide 4



KERNEL-MODE VS. 
USER-MODE 
DEBUGGING



CYBR473-2023T1: Malware and Reverse Engineering

User Mode Debugging
• Debugger runs on the same system as the code being 

analysed

• Debugging a single executable

• Separated from other executables by the OS

slide 6



CYBR473-2023T1: Malware and Reverse Engineering

Kernel Mode Debugging (The Old Way)

• Requires two computers because there is only one 
kernel per computer

• If the kernel is at a breakpoint, the system stops
• One computer runs the code being debugged
• Other computer runs the debugger
• OS must be configured to allow kernel debugging
• Two machines must be connected

slide 7



CYBR473-2023T1: Malware and Reverse Engineering

Windows 7 Advanced Boot Options
• Press F8 during startup

• “Debugging Mode”

slide 8



CYBR473-2023T1: Malware and Reverse Engineering

Side-Effect of Debug Mode
• PrntScn key causes 

BSOD

• Use Shift+PrntScn
instead

slide 9



CYBR473-2023T1: Malware and Reverse Engineering

Kernel Mode Debugging (The New Way)
• Mark Russinovich's Livekd tool allows you to debug the 

kernel with only one computer!

• MUCH easier :)

• Tool has some limitations

slide 10



CYBR473-2023T1: Malware and Reverse Engineering

How LiveKd Works

slide 11



USING A 
DEBUGGER



CYBR473-2023T1: Malware and Reverse Engineering

Two Ways
• Start the program with the debugger

o It stops running immediately prior to the execution of its entry 
point

• Attach a debugger to a program that is already running
o All its threads are paused
o Useful to debug a process that is affected by malware

slide 13



CYBR473-2023T1: Malware and Reverse Engineering

Single-Stepping
• Simple, but slow

• Don't get bogged down in details

slide 14



CYBR473-2023T1: Malware and Reverse Engineering

Example
• This code decodes the string with 

XOR

slide 15



CYBR473-2023T1: Malware and Reverse Engineering

Stepping-over vs. Stepping-into
• Single step executes one instruction

• Step-over call instructions
o Completes the call and returns without pausing
o Decreases the amount of code you need to analyse
o Might miss important functionality, especially if the function 

never returns

• Step-into a call
o Moves into the function and stops at its first command

slide 16



CYBR473-2023T1: Malware and Reverse Engineering

Pausing Execution with Breakpoints
• A program that is paused at a breakpoint is called 

broken

• Example
o You can't tell where this call is going
o Set a breakpoint at the call and see what's in eax

slide 17



CYBR473-2023T1: Malware and Reverse Engineering

Using a Debugger to Determine a Filename
• This code calculates a 

filename and then creates 
the file

• Set a breakpoint at 
CreateFileW and look 
at the stack to see the 
filename

slide 18



CYBR473-2023T1: Malware and Reverse Engineering

WinDbg

slide 19



CYBR473-2023T1: Malware and Reverse Engineering

Encrypted Data
• Suppose malware sends 

encrypted network data

• Set a breakpoint before 
the data is encrypted and 
view it

slide 20



CYBR473-2023T1: Malware and Reverse Engineering

OllyDbg

slide 21



CYBR473-2023T1: Malware and Reverse Engineering

Types of Breakpoints
• Software execution

• Hardware execution

• Conditional

slide 22



CYBR473-2023T1: Malware and Reverse Engineering

Software Execution Breakpoints
• The default option for most debuggers

• Debugger overwrites the first byte of the instruction 
with 0xCC
o The instruction for INT 3
o An interrupt designed for use with debuggers
o When the breakpoint is executed, the OS generates an 

exception and transfers control to the debugger

slide 23



CYBR473-2023T1: Malware and Reverse Engineering

Memory Contents at a Breakpoint
• There's a breakpoint at the push instruction

• Debugger says it's 0x55, but it's really 0xCC

slide 24



CYBR473-2023T1: Malware and Reverse Engineering

When Software Execution Breakpoints Fail
• If the 0xCC byte is changed during code execution, the 

breakpoint won't occur

• If other code reads the memory containing the 
breakpoint, it will read 0xCC instead of the original byte

• Code that verifies integrity will notice the discrepancy

slide 25



CYBR473-2023T1: Malware and Reverse Engineering

Hardware Execution Breakpoints
• Uses four hardware Debug Registers

o DR0 through DR3 – addresses of breakpoints
o DR7 stores control information

• The address to stop at is in a register
• Can break on access or execution

o Can set to break on read, write, or both
• No change in code bytes
• Running code can change the DR registers, to interfere with debuggers
• General Detect flag in DR7

o Causes a breakpoint prior to any mov instruction that would change the 
contents of a Debug Register

o Does not detect other instructions, however

slide 26



CYBR473-2023T1: Malware and Reverse Engineering

Conditional Breakpoints
• Breaks only if a condition is true

o Ex: Set a breakpoint on the GetProcAddress function
o Only if the parameter being passed in is RegSetValue

• Implemented as software breakpoints
o The debugger always receives the break
o If the condition is not met, it resumes execution without alerting the user

• Conditional breakpoints take much longer than ordinary 
instructions

• A conditional breakpoint on a frequently-accessed instruction can 
slow a program down

• Sometimes so much that it never finishes
slide 27



EXCEPTIONS



CYBR473-2023T1: Malware and Reverse Engineering

Exceptions
• Used by debuggers to gain control of a running program
• Breakpoints generate exceptions
• Exceptions are also caused by

o Invalid memory access
o Division by zero
o Other conditions

• First- and second-chance exceptions
o When a exception occurs while a debugger is attached

§ The program stops executing
§ The debugger is given first chance at control
§ Debugger can either handle the exception, or pass it on to the program
§ If it's passed on, the program's exception handler takes it

slide 29



CYBR473-2023T1: Malware and Reverse Engineering

Second Chance
• If the application doesn't handle the exception
• The debugger is given a second chance to handle it

o This means the program would have crashed if the debugger 
were not attached

• In malware analysis, first-chance exceptions can usually 
be ignored

• Second-chance exceptions cannot be ignored
o They usually mean that the malware doesn't like the 

environment in which it is running

slide 30



CYBR473-2023T1: Malware and Reverse Engineering

Common Exceptions
• INT 3 (Software breakpoint)
• Single-stepping in a debugger is implemented as an exception

o If the trap flag in the flags register is set,
o The processor executes one instruction and then generates an exception

• Memory-access violation exception
o Code tries to access a location that it cannot access, either because the 

address is invalid or because of access-control protections
• Violating Privilege Rules

o Attempt to execute privileged instruction with outside privileged mode
o In other words, attempt to execute a kernel mode instruction in user mode
o Or, attempt to execute Ring 0 instruction from Ring 3

slide 31



CYBR473-2023T1: Malware and Reverse Engineering

List of Exceptions

slide 32



MODIFYING
EXECUTION WITH 
A DEBUGGER



CYBR473-2023T1: Malware and Reverse Engineering

Skipping a Function
• You can change control flags, the instruction pointer, or 

the code itself

• You could avoid a function call by setting a breakpoint 
where at the call, and then changing the instruction 
pointer to the instruction after it
o This may cause the program to crash or malfunction

slide 34



CYBR473-2023T1: Malware and Reverse Engineering

Testing a Function
• You could run a function directly, without waiting for the 

main code to use it

o You will have to set the parameters

o This destroys a program's stack

o The program won't run properly when the function completes

slide 35



MODIFYING
PROGRAM EXECUTION 
IN PRACTICE



CYBR473-2023T1: Malware and Reverse Engineering

Example (A Real Virus)
• Operation depends on language setting of a computer

o Simplified Chinese
§ Uninstalls itself & does no harm

o English
§ Display pop-up "Your luck's no good"

o Japanese or Indonesian
§ Overwrite the hard drive with random data

slide 37



CYBR473-2023T1: Malware and Reverse Engineering

Break at 1; Change Return Value

slide 38



END OF LECTURE. THANK YOU.


