School of

Engineering and Computer Science

Te Kura Matai Ptukaha, Purorohiko

CYBR 473 T1 2023
Malware and Reverse Engineering

Debugging

Chapter 8: “Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software”, Michael Sikorski and Andrew Honig, 2012

VICTORIA UNIVERSITY OF

CAPITAL THINKING.
GLOBALLY MINDED. vivv WELLINGTON

TE HERENGA WAKA

Disassemblers vs. Debuggers

A disassembler like IDA Pro shows the state of the
program just before execution begins

* Debuggers show
o Every memory location
o Register
o Argument to every function
o At any point during the processing
o And let you change them

CYBR473-2023T1: Malware and Reverse Engineering slide 1

Two Debuggers

* OllyDbg
o Most popular for malware analysis
o User-mode debugging only
o IDA Pro has a built-in debugger, but it's not as easy to use or
powerful as Ollydbg

* Windbg

o Supports kernel-mode debugging

CYBR473-2023T1: Malware and Reverse Engineering slide 2

Source-Level vs. Assembly-Level Debuggers

* Source-level debugger
o Usually built into the development platform
o Can set breakpoints (which stop at lines of code)
o Can step through the program one line at a time

* Assembly-level debuggers (low-level)
o Operate on assembly code rather than source code

o Malware analysts are usually forced to use them because they
don't have source code

CYBR473-2023T1: Malware and Reverse Engineering slide 3

Windows Crashes

-
&' HowToFindCrashinExeCode.exe = 2

* When an app crashes,
Wl N d ows m ay Offe r to " Windows can check online for solution to the problem.
O pe n it i n a d e b u gge r < Check online for a solution and close the program

< Close the program

@ '| HowToFindCrashinExeCode.exe has stopped working

= Debug the program

e Usually it uses Windbg

A) Hide problem details

Problem signature: -
Problem Event Name: APPCRASH
Application Name: HowToFindCrashInExeCode.exe :
Application Version: 0.0.0.0
Application Timestamp: 5195e3f0
Fault Module Name: ow | oFindCrashln ode.
Fault Module Version: 0.0.0.0
Fault Module Timestamp:
Exception Code: 0000005 I
Exception Offset: 00001032 i

CYBR473-2023T1: Malware and Reverse Engineering slide 4

-MODE V5S.
-MODE
DEBUGGING

User Mode Debugging

* Debugger runs on the same system as the code being
analysed

* Debugging a single executable

* Separated from other executables by the OS

slide 6

CYBR473-2023T1: Malware and Reverse Engineering

Kernel Mode Debugging (The Old Way)

* Requires two computers because there is only one
kernel per computer

* If the kernel is at a breakpoint, the system stops

* One computer runs the code being debugged

 Other computer runs the debugger

* OS must be configured to allow kernel debugging

e Two machines must be connected

slide 7

CYBR473-2023T1: Malware and Reverse Engineering

Windows 7 Advanced Boot Options

Advanced Boot Options

i Press F8 d u ri ng Sta rtu p Choose Advanced Options for: Microsoft windows 7

(Use the arrow keys to highlight your choice.)

Repair Your Computer

* “Debugging Mode”

Safe Mode with Networking
Safe Mode with Command Prompt

Enable Boot Logging

Enable low-resolution video (640x480)

Last Known Good Configuration (advanced)
Directory Services Restore Mode

Debugging Mode

Disable automatic restart on system failure
Disable Driver Signature Enforcement

Start wWindows Normally

Description: View a 1ist of system recovery tools y
startup problems, run diagnostics, or

ENTER=Choose

CYBR473-2023T1: Malware and Reverse Engineering slide 8

Side-Effect of Debug Mode

* PrntScn key causes
BSOD

e Use Shift+PrntScn Your PC ran into a problem that it couldn't
instead handle, and now it needs to restart.

You can search for the error online: HAL INITIALIZATION FAILED

CYBR473-2023T1: Malware and Reverse Engineering

Kernel Mode Debugging (The New Way)

* Mark Russinovich's Livekd tool allows you to debug the
kernel with only one computer!

e MUCH easier :)

* Tool has some limitations

slide 10

CYBR473-2023T1: Malware and Reverse Engineering

How LiveKd Works

After giving it some thought, I realized that I could fool the debuggers
into thinking that they were looking at a crash dump file by
implementing a file system filter driver that presented a “virtual” crash
dump file debuggers could open. Since a crash dump file is simply a file
header followed by the contents of physical memory, the driver could
satisfy reads of the virtual dump file with the contents of physical
memory, which the driver could easily read from the \Device\Physical

Memory section object the memory manager creates. A couple of weeks
later, LiveKd was born.

CYBR473-2023T1: Malware and Reverse Engineering

(=N =N,
JIN N O Oy U1 OO

niND U/

A
DEBUGGER

Two Ways

e Start the program with the debugger
o It stops running immediately prior to the execution of its entry
point

e Attach a debugger to a program that is already running
o All its threads are paused
o Useful to debug a process that is affected by malware

CYBR473-2023T1: Malware and Reverse Engineering slide 13

Single-Stepping

* Simple, but slow

 Don't get bogged down in details

CYBR473-2023T1: Malware and Reverse Engineering slide 14

Example

* This code decodes the string with
XOR

DOF3FDF8 DOFSFEEE FDEEESDD 9C (.............)

4CF3FDF8 DOFSFEEE FDEEESDD 9C (L............)

4C6FFDF8 DOFSFEEE FDEEESDD 9C (Lo...........)

4C6F61F8 DOFSFEEE FDEEESDD 9C (Loa..........)
. SNIP .

4C6F6164 4C696272 61727941 00 (LoadLibraryA.)

mov edi, DWORD_00406904
mov ecx, 0Ox0d
LOC_040106B2

Xor [edi], 0x9C

inc edi

loopw LOC_040106B2

DWORD: 00406904 : F8FDF3DOf

slide 15

CYBR473-2023T1: Malware and Reverse Engineering

Stepping-over vs. Stepping-into

* Single step executes one instruction

e Step-over call instructions
o Completes the call and returns without pausing
o Decreases the amount of code you need to analyse
o Might miss important functionality, especially if the function
never returns

e Step-into a call
o Moves into the function and stops at its first command

CYBR473-2023T1: Malware and Reverse Engineering slide 16

Pausing Execution with Breakpoints

A program that is paused at a breakpoint is called
broken

 Example
o You can't tell where this call is going
o Set a breakpoint at the call and see what's in eax

00401008 mov ecx, [ebp+arg 0]
0040100B mov eax, |[edx]
00401000 call eax

CYBR473-2023T1: Malware and Reverse Engineering slide 17

Using a Debugger to Determine a Filename

* This code calculates a

filename and then creates
the file

e Set a breakpoint at
CreateFileW and look

at the stack to see the
filename

00401008
0040100D
00401014
00401016
0040101D
00401020
00401024
00401027
0040102A
0040102C
00401032
00401034
00401036
00401038
0040103A
00401040
00401042
00401044
00401047
0040104E
00401050
00401051

xor
mov
mov
mov
add
mov
add
test
jnz
mov
push
push
push
mov
mov
push
push
mov
mov
push
push
mov

00401055 flcall

eax, esp

[esp+0ODOh+var_4], eax

eax, edx
[esp+0DOh+NumberOfByteskritten], 0
eax, OFFFFFFFEh

cx, [eax+2]

eax, 2

X, CX

short loc_401020

ecx, dword ptr ds:a_txt ; ".txt"

0 ; hTemplateFile

0 ; dwFlagsAndAttributes

2 ; dwCreationDisposition
[eax], ecx

ecx, dword ptr ds:a_txt+4

0 ; LpSecurityAttributes

0 ; dwShareMode

[eax+4], ecx

cx, word ptr ds:a_txt+8

0 ; dwDesiredAccess

edx ; LpFileName

[eax+8], cx

CreateFilelW ; CreateFileW(x,X,X,X,X,X,X)

slide 18

CYBR473-2023T1: Malware and Reverse Engineering

WinDbg

[c\SimpleServer.exe - WinDbg:6.110001.404 X6 s) S
Fle Edt View Debug Window Help
& | Bl ASRBPEE ([SIO0BUBEDRFEOOD[:10] Al e
Command ()
0 <r—l'l-:l > -
0-000>
0 000>
0:000>
0:000>
0:000>
0-000>
0:000>
0:000>
M0-000>
0:000>
0:000> bp CreateFileV
0:000> g

Breakpoint 0 hat

cax~00000000 cbx~00000000 ecx~7612e%b9 edx~0000004c e51~00000001 edi~00662e58

=1p*7608a768 asp=0024£528 ebp=~0024£550 10pl=«0 nv up @1 pl =zr na p& nc
cs*001b s5+0023 ds=0023 es=0023 £s5°003b gs*0000 of 1=00000245%6
KERNELBASE |CrxecatefrileV

76084768 8bESE ROV edy edy
0:000> du dvo(esp+s)
0024£880 “LogFile. txt”

m

j0:000> |

| n0, Cold SysOiclocal> Proc000:165¢ Thed 00066 ASM OVR CAPS NUM

CYBR473-2023T1: Malware and Reverse Engineering slide 19

Encrypted Data

* Suppose malware sends
encrypted network data

* Set a breakpoint before
the data is encrypted and
view it

00401000
00401006
00401008
0040100D
004010E4
004010E7
004010EC
004010EF
004010F4
004010FA
004010FC
00401101
00401105
00401106
00401107

sub
mov
Xor
mov
lea
call
lea
flcall
mov
push
push
lea
push
push
call

esp, OCCh

eax, dword_403000
eax, esp
[esp+OCCh+var_4], eax
eax, [esp+0CCh+buf]
GetData

eax, [esp+0CCh+buf]

EncryptData

ecx, S

0 ; flags
OC8h ; len
eax, [esp+0D4h+buf]

eax ; buf
ecx ;S
ds:Send

slide 20

CYBR473-2023T1: Malware and Reverse Engineering

OllyDbg

OllyDbyg - putty.exe - [CPU - main thread, module putty] B =10 x|

[C] File View Debug Plugins Options Window Help =18 x|
Blex| »/u wi+ 304 9) LlE[m/T|wE]c|/|K[BIR].]5]

984550F0 BEET N /PUSH 68 Registers <FPU)

Uu4550r2 | . 68 88814700 | PUSH putty.00478108 EAX ?6FD48FF kerne132.Baselhr
AR4550F7 | . E8 98210000 CALL putty.0B457204 ECX 98900000

AR455@0FC| . BF 94000000 MOU EDI .94 EDX @B4550F8 putty.<{ModuleEnt
AR455101 | . 8BC? MOU EAX.EDI EBX 7FFD7000

AR455193 | . E8 BS8FAFFFF CALL putty.fB454BCA ESP B@12FF8C

An455188 | . 8965 E8 MOU DWORD PTR SS:[EBP-181,ESP EBP PB12FF94

An455108| . 8BF4 MOU ESI,ESP ES1 90000000

#B45518D| . 893E MOU DWORD PTR DS: [ESI1,.EDI EDI ©#ABARAGA

AB455180F| . 56 PUSH ESI 2rsionInformation

@A45511@| . FF15 DCD2458@ CALL DWORD PTR DS:[<&KERNEL32.GetUersior i EIP B884550F@ putty.<{Modulel
An455116| . 8B4E 19 MOU ECX.DWORD PTR DS:[ESI+181] C® ES 23 I
AB455119| . 89BD 4CF14708 MOU DWORD PTR DS:[47F14C1,ECR Py CS F
@@45511F | . 84 MOU EAX,DWORD PTR DS:[ESI+41] A ® S8 ;
#8455122 | . ﬂ3 58P14700 MOU DWORD PTR DS:[47F1581,EAX P L) 0 :) F
AB4551° - MOU EDX.DWORD PTR DS:[ESI+81 S @ FS @93B 32 1 1

#BR4551°
#4551
#B8455133
AB455139
#B45513F

- 8915 SCF147BB
B?6 @C

-8

. 81E6 FF?7F@000
- 8935 50F14700
. 83F97 82

MOU DWORD PTR DS:[47F15C1,.EDX
MOU ESI.DWORD PTR DS:[ESI+C]
AND ESI,?FFF

MOU DWORD PTR DS:[47F1501.ESI
CMP ECX,2

I 8 GS 8068

0 @ LastErr ERROR_INSUFFICIE
EFL 08888246 (NO.NB.E.BE.NS.P

#A455142| ..?74 @C JE SHORT putty.88455150 ST@ enmpty 6.8
AnR455144| . 81CE #AA80AAAA OR ESI . 8000 ST1 empty 0.0
@A45514n | . 8935 5@F1470@ MOU DWORD PTR DS:[47F1501,ESI ST2 empty 0.9
An455158| > C1E@ @88 SHL EAX.8 ST3 empty 0.0
AR455153 | . 83C2 ADD EAX,EDX ST4 empty 0.0
AR455155| . A3 54F14708 | MOU DUWORD PTR DS:[47F1541,EAX STS enmpty 0.0
An45515a| . 33F6 XOR ESI.ESI ST6 empty 0.0
@B345515C| . 56 PUSH ESI pModule => NULL 2517 enpty 028
AR45515D| . 8B3D D8D245688 MOU EDI,.DWORD PTR DS: [<&KERNEL32.GetMod{ [kerne132 GetModuleHandlef 3210 I
88455163 | . FFD? CALL EDI GetModuleHandlef FST @008 Cond @ @ @ @ Err O
@A455165| . 66:8138 4D5A |CMP WORD PTR DS:[EAX1.5A4D FCU ®27F Prec NEAR.53 Mask
#845516A| ..?5 1F JNZ SHORT putty.@B45518B =
AA4SS1 60 2RB48 3C MO _ECX _NUARND PTR NS:TFAX+3C]

AR 8 B D45 | o
Address [Hex L [ascrr I = 111“11'%‘}"');1 }'Hﬁ’w)u'«fa -
¥B47BO0B0 V8 BB VY BB BE A9 45 ¥B|....3rE. 991 2FF94 1’1‘11,,"1.“11
AB47BAAS (PP PP OO 9O PG PP B0 BB |........ 0012rr98 | [7742E4B6 | RE
#B47BA18 [ED 3D 45 80 25 99 45 00 |s=E.Z0E. #912Fr9c || 2EFD7008 |
AR47BA18 |AB A9 45 0@ un 90 00 00 |ArE..... vl o012rraa || 7457DESC =
9478720 A8 A9 98 @8 93 3E 45 09 8OF (i B0
Analysing putty: 1270 heuristical procedures, 911 calls to known, 266 calls to guessed functions Paused

CYBR473-2023T1: Malware and Reverse Engineering

Types of Breakpoints

* Software execution

e Hardware execution

e Conditional

CYBR473-2023T1: Malware and Reverse Engineering slide 22

Software Execution Breakpoints

* The default option for most debuggers

* Debugger overwrites the first byte of the instruction

with 0xCC
o The instruction for INT 3

o An interrupt designed for use with debuggers
o When the breakpoint is executed, the OS generates an
exception and transfers control to the debugger

CYBR473-2023T1: Malware and Reverse Engineering slide 23

Memory Contents at a Breakpoint

* There's a breakpoint at the push instruction

 Debugger says it's 0x55, but it's really 0xCC

Disassembly view Memory dump
00401130 55 fpush ebp 00401130 HcC 8B EC 83
00401131 BB EC mov ebp, esp 00401134 E4 F8 81 EC
00401133 83 E4 FB8 and esp, OFFFFFFF8h 00401138 A4 03 00 00
00401136 81 EC A4 03 00 00 sub esp, 3Adh 0040113C A1l 00 30 40
0040113C A1 00 30 40 00 mov eax, dword_403000 00401140 00

CYBR473-2023T1: Malware and Reverse Engineering slide 24

When Software Execution Breakpoints Fail

* If the 0xCC byte is changed during code execution, the
breakpoint won't occur

* If other code reads the memory containing the
breakpoint, it will read 0xCC instead of the original byte

* Code that verifies integrity will notice the discrepancy

CYBR473-2023T1: Malware and Reverse Engineering slide 25

Hardware Execution Breakpoints

* Uses four hardware Debug Registers
o DRO through DR3 — addresses of breakpoints
o DR7 stores control information
* The address to stop at is in a register
* Can break on access or execution
o Can set to break on read, write, or both
* No change in code bytes
 Running code can change the DR registers, to interfere with debuggers
 General Detect flag in DR7

o Causes a breakpoint prior to any mov instruction that would change the
contents of a Debug Register

o Does not detect other instructions, however

CYBR473-2023T1: Malware and Reverse Engineering slide 26

Conditional Breakpoints

* Breaks only if a condition is true
o Ex: Set a breakpoint on the GetProcAddress function
o Only if the parameter being passed in is RegSetValue

* Implemented as software breakpoints

o The debugger always receives the break
o If the condition is not met, it resumes execution without alerting the user

* Conditional breakpoints take much longer than ordinary
instructions

* A conditional breakpoint on a frequently-accessed instruction can
slow a program down

 Sometimes so much that it never finishes

CYBR473-2023T1: Malware and Reverse Engineering slide 27

(=) (=Nl

)N N O O\ 00 f
v N D C
o\ U SL\

—

o

EXCEPTIONS

Exceptions

* Used by debuggers to gain control of a running program
* Breakpoints generate exceptions

* Exceptions are also caused by
o Invalid memory access
o Division by zero
o Other conditions

* First- and second-chance exceptions

o When a exception occurs while a debugger is attached
= The program stops executing
= The debugger is given first chance at control
= Debugger can either handle the exception, or pass it on to the program
= |fit's passed on, the program's exception handler takes it

CYBR473-2023T1: Malware and Reverse Engineering slide 29

Second Chance

* If the application doesn't handle the exception

* The debugger is given a second chance to handle it

o This means the program would have crashed if the debugger
were not attached

* In malware analysis, first-chance exceptions can usually
be ignored

* Second-chance exceptions cannot be ignored

o They usually mean that the malware doesn't like the
environment in which it is running

CYBR473-2023T1: Malware and Reverse Engineering slide 30

Common Exceptions

e INT 3 (Software breakpoint)

* Single-stepping in a debugger is implemented as an exception
o If the trap flag in the flags register is set,

o The processor executes one instruction and then generates an exception

* Memory-access violation exception
o Code tries to access a location that it cannot access, either because the
address is invalid or because of access-control protections
* Violating Privilege Rules
o Attempt to execute privileged instruction with outside privileged mode

o In other words, attempt to execute a kernel mode instruction in user mode
o Or, attempt to execute Ring 0 instruction from Ring 3

CYBR473-2023T1: Malware and Reverse Engineering slide 31

List of Exceptions

The following chart lists the exceptions that can be generated by the Intel 80286, 80386, 80486, and Pentium processors:

Exception | Description
(dec/hex) |
__________ R R R R R RpRpRy RSP RySySySS
©@ ©eh | Divide error:
| Occurs during a DIV or an IDIV instruction when the
| divisor is zero or a quotient overflow occurs.
1 e1ih Single-step/debug exception:

Occurs for any of a number of conditions:
- Instruction address breakpoint fault
Data address breakpoint trap

General detect fault

Single-step trap

Task-switch breakpoint trap

2 ©2h | Nonmaskable interrupt:
| Occurs because of a nonmaskable hardware interrupt.

3 @3h | Breakpoint:
| Occurs when the processor encounters an INT 3 instruction.

CYBR473-2023T1: Malware and Reverse Engineering slide 32

MODIFYING
EXECUTION WITH
A

Skipping a Function

* You can change control flags, the instruction pointer, or
the code itself

* You could avoid a function call by setting a breakpoint
where at the call, and then changing the instruction

pointer to the instruction after it
o This may cause the program to crash or malfunction

CYBR473-2023T1: Malware and Reverse Engineering slide 34

Testing a Function

* You could run a function directly, without waiting for the
main code to use it

o You will have to set the parameters
o This destroys a program's stack

o The program won't run properly when the function completes

CYBR473-2023T1: Malware and Reverse Engineering slide 35

¢ 0 ¢
L z
o L C
“; 8 Z 6
Y L Q C
B0 7 2

=
8

MODIFYING
PROGRAM EXECUTION

Example (A Real Virus)

* Operation depends on language setting of a computer

o Simplified Chinese
= Uninstalls itself & does no harm

o English
= Display pop-up "Your luck's no good"

o Japanese or Indonesian
= QOverwrite the hard drive with random data

CYBR473-2023T1: Malware and Reverse Engineering slide 37

Break at 1; Change Return Value

00411349 call GetSystemDefaultLCID

0041134F Hmov [ebp+var_4], eax

00411352 cmp [ebp+var_4], 409h 409 = English
00411359 jnz short loc_ 411360

0041135B call sub 411037

00411360 cmp [ebp+var_4], 411h 411 = Japanese
00411367 jz short loc_ 411372

00411369 cmp [ebp+var 4], 421h 421 = Indonesian
00411370 jnz short loc_ 411377

00411372 call sub 41100F

00411377 cmp [ebp+var_4], 0C04h C04 = Chinese
0041137E jnz short loc_ 411385

00411380 call sub_41100A

CYBR473-2023T1: Malware and Reverse Engineering

—_——

END OF LECTURE. THANK YOU.

