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History

• OllyDbg was developed more than a decade ago
• First used to crack software and to develop exploits
• The OllyDbg 1.1 source code was purchased by Immunity 

and rebranded as Immunity Debugger
• The two products are very similar
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Don't Use OllyDbg 2!
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Ways to Debug Malware – Load
• You can load EXEs or DLLs directly into OllyDbg

• Opening and EXE
o File, Open
o Add command-line arguments if needed
o OllyDbg will stop at the entry point, WinMain, if it can be 

determined
o Otherwise it will break at the entry point defined in the PE 

Header
§ Configurable in Options, Debugging Options
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Ways to Debug Malware (cont.) – Attach
• If the malware is already running, you can attach OllyDbg

to the running process

• Attaching to a running process
o File, Attach
o OllyDbg breaks in and pauses the program and all threads

§ If you catch it in  DLL, set a breakpoint on access to the entire code 
section to get to the interesting code
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Reloading a File
• Ctrl+F2 reloads the current executable

• F2 sets a breakpoint

slide 6
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Disassembler
Highlight: next instruction to be 

executed

Registers

Stack
Memory
dump

The OllyDbg Interface
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Modifying Data 
• Disassembler window

o Press spacebar
• Registers or Stack

o Right-click, modify
• Memory dump

o Right-click, Binary, Edit
o Ctrl+G to go to a memory location
o Right-click a memory address in another pane and click “Follow 

in dump”
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Memory Map
• EXE and DLLs 

are identified

• Double-click
any row to 
show a 
memory dump

• Right-click, 
View in 
Disassembler
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Rebasing
• Rebasing occurs when a module is not loaded at its 

preferred base address
• PE files have a preferred base address

o The image base in the PE header
o Usually, the file is loaded at that address
o Most EXEs are designed to be loaded at 0x00400000

• EXEs that support Address Space Layout Randomization
(ASLR) will often be relocated
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DLL Rebasing
• DLLs are more commonly relocated

o Because a single application may import many DLLs

o Windows DLLs have different base addresses to avoid this

o Third-party DLLs often have the same preferred base address
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Absolute vs. Relative Addresses
• The first 3 instructions will work fine if relocated because 

they use relative addresses

• The last one has an absolute address that will be wrong if 
the code is relocated
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Fix-up Locations
• Most DLLS have a list of fix-up locations in the .reloc

section of the PE header
o These are instructions that must be changed when code is 

relocated

• DLLs are loaded after the EXE and in any order
• You cannot predict where DLLs will be located in memory 

if they are rebased
• Example .reloc section on next slide
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Fix-up Locations (cont.)
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DLL Rebasing
• DLLS can have their .reloc removed

o Such a DLL cannot be relocated
o Must load at its preferred base address

• Relocating DLLs is bad for performance
o Adds to load time
o So good programmers specify non-default base addresses 

when compiling DLLs
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Example of DLL Rebasing Olly Memory Map
• DLL-A and DLL-B prefer location 0x100000000
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IDA Pro
• IDA Pro is not attached to a real running process

• It doesn't know about rebasing

• If you use OllyDbg and IDA Pro at the same time, you 
may get different results
o To avoid this, use the “Manual Load” option in IDA Pro
o Specify the virtual base address manually
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Viewing Threads and Stacks
• View, Threads

• Right-click a thread to “Open in CPU”, kill it, etc.
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Each Thread Has its Own Stack
• Visible in Memory Map
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ASLR is Fading
• Address Space Layout Randomization

o “ASLR is fundamentally flawed in sandboxed environments such 
as JavaScript and future defenses should not rely on
randomized virtual addresses as a building block.”

• https://www.theregister.com/2021/02/26/chrome_aslr_
bypass/
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OllyDbg Code-Executing Options
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Run and Pause
• You could Run a program and click Pause when it's where 

you want it to be

• But that's sloppy and might leave you somewhere 
uninteresting, such as inside library code

• Setting breakpoints is much better
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Run and Run to Selection
• Run is useful to resume execution after hitting a 

breakpoint

• Run to Selection will execute until just before the 
selected instruction is executed
o If the selection is never executed, it will run indefinitely
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Execute till Return
• Pauses execution until just before the current function is 

set to return

• Can be useful if you want to finish the current function 
and stop

• But if the function never ends, the program will continue 
to run indefinitely
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Execute till User Code
• Useful if you get lost in library code during debugging

• Program will continue to run until it hit compiled 
malware code
o Typically the .text section
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Stepping Through Code
• F7—Single-step (also called step-into)

• F8—Step-over
o Stepping-over means all the code is executed, but you don't 

see it happen

• Some malware is designed to fool you, by calling routines 
and never returning, so stepping over will miss the most 
important part
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Types of Breakpoints

• Software breakpoints
• Hardware breakpoints
• Conditional breakpoints
• Breakpoints on memory

• F2 – Add or remove a breakpoint
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Viewing Active Breakpoints
• View, Breakpoints, or click B

icon on toolbar
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OllyDbg Breakingpoint Options
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Saving Breakpoints
• When you close OllyDbg, it saves your breakpoints

• If you open the same file again, the breakpoints are still 
available
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Software Breakpoints
• Useful for string decoders

• Malware authors often obfuscate strings
o With a string decoder that is called before each string is used
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String Decoders
• Put a breakpoint at the end of the decoder routine

• The string becomes readable on the stack
Each time you press Play in OllyDbg, the program will 
execute and will break when a string is decoded for use

• This method will only reveal strings as they are used
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Conditional Breakpoints
• Breaks only when a condition is true

• Ex: Poison Ivy backdoor
o Poison Ivy allocates memory to house the shellcode it receives 

from Command and Control (C&C) servers
o Most memory allocations are for other purposes and 

uninteresting
o Set a conditional breakpoint at the VirtualAlloc function 

in Kernel32.dll
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Normal Breakpoint
• Put a standard breakpoint at the start of the 
VirtualAlloc function

• Here's the stack when it hits, showing five items:
o Return address
o 4 parameters (Address, Size, AllocationType, Protect)
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Conditional Breakpoint
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Hardware Breakpints

• Don't alter code, stack, or any target resource
• Don't slow down execution
• But you can only set 4 at a time
• Click Breakpoint, “Hardware, on Execution”
• You can set OllyDbg to use hardware breakpoints by 

default in Debugging Options
o Useful if malware uses anti-debugging techniques
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Memory Breakpoints
• Code breaks on access to specified memory location

• OllyDbg supports software and hardware memory 
breakpoints

• Can break on read, write, execute, or any access

• Right-click memory location, click Breakpoint, “Memory, 
on Access”
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Memory Breakpoints (cont.)
• You can only set one memory breakpoint at a time

• OllyDbg implements memory breakpoints by changing 
the attributes of memory blocks

• This technique is not reliable and has considerable 
overhead

• Use memory breakpoints sparingly
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CYBR473-2023T1: Malware and Reverse Engineering

When is a DLL Used?

slide 43
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loaddll.exe

• DLLs cannot be executed directly

• OllyDbg uses a dummy loaddll.exe program to load 
them

• Breaks at the DLL entry point DLLMain once the DLL is 
loaded

• Press Play to run DLLMain and initialize the DLL for use
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Demo
• Get OllyDbg 1.10, NOT 2.00 or 2.01
• Use Win 2016 Server, 64 bit
• In OllyDbg, open 

C:\Windows\SysWOW64\ws2_32.dll 
• Click Yes at this box
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Demo: Calling DLL Exports
• Click Debug, Call 

DLL Export – it 
fails because 
DLLMain has not 
yet been run

• Reload the DLL 
(Ctrl+F2), click Run
button once

• Click Debug, Call 
DLL Export – now 
it works
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Demo: Running ntohl

• Converts a 32-bit number from network to host byte 
order

• Click argument 1, type in 7f000001
o 127.0.0.1 in “network” byte order

• Click “Follow in Disassembler” to see the code

• Click “Call” to run the function

• Answer in EAX
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Tracing
• Powerful debugging technique

• Records detailed execution information

• Types of Tracing
o Standard Back Trace
o Call Stack Trace
o Run Trace
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Tracing: Standard Back Trace
• You move through the disassembler with the Step Into and 

Step Over buttons

• OllyDbg is recording your movement

• Use minus (-) key on keyboard to see previous instructions
o But you won't see previous register values

• Plus (+) key takes you forward
o If you used Step Over, you cannot go back and decide to Step Into
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Tracing: Call Stack Trace
• Views the execution path to a given function

• Click View, Call Stack

• Displays the sequence of calls to reach your current 
location
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Demo from EasyCTF 2017
• Simple guessing game

• Wrong answer produces an insult
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Entire main() in OllyDbg
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Step into puts
• Press F7 twice

• Click View, Call Stack
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Step Into Again
• Click View, CPU
• Press F7 three times
• Click View, Call Stack 
• New function appears at top
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Return
• Click View, CPU

• Press F7 22 times, until the RETN and execute it

• Click View, Call Stack 
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A Deeper Call Stack
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Tracing: Run Trace
• Code runs, and OllyDbg saves every executed instruction 

and all changes to registers and flags

• Highlight code, right-click, Run Trace, Add Selection

• After code executes, View, Run Trace
o To see instructions that were executed
o + and - keys to step forward and backwards
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Demo: Run Trace of 00000.exe

• Highlight code, right-click, Run Trace, Add Selection
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Demo: Run Trace of 00000.exe (cont.)

• Run code
• Step back with - and forward with +
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Trace Into and Trace Over
• Buttons below “Options”

• Easier to use than Add Selection

• If you don't set breakpoints, OllyDbg will attempt to 
trace the entire program, which could take a long time 
and a lot of memory
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Debug, Set Condition
• Traces until a condition 

hits

• This condition catches 
Poison Ivy shellcode, 
which places code in 
dynamically allocated 
memory below 0x400000
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When an Exception Occurs
• OllyDbg will stop the program

• You have these options to pass the exception into the 
program:
o Shift+F7: Step into exception
o Shift+F8: Step over exception
o Shift+F9: Run exception handler

• Often you just ignore all exceptions in malware analysis
o We are not trying to fix problems in code
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Binary Edit
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Fill
• Fill with 00

• Fill with NOP (0x90)
o Used to skip instructions
o e.g. to force a branch
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Saving Patched Code
• Right-click disassembler window after patching

o Copy To Executable, All Modifications, Save File
o Copy All

• Right-click in new window
o Save File

slide 69



ANALYSING
SHELLCODE

Undocumented technique



CYBR473-2023T1: Malware and Reverse Engineering

Easy Way to Analyse Shellcode
• Copy shellcode from a hex editor to clipboard

• Within memory map, select a region of type “Priv” 
(Private memory)

• Double-click rows in memory map to show a hex dump
o Find a region of hundreds of consecutive zeroes

• Right-click chosen region in Memory Map, Set Access, 
Full Access (to clear NX bit)
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Analysing Shellcode
• Highlight a region of zeroes, Binary, Binary Paste

• Set EIP to location of shellcode
o Right-click first instruction, New Origin Here
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Log
• View, Log

o Shows steps to 
reach here
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Watches Window

• View, Watches
o Watch the value of an expression
o Press SPACEBAR to set expression
o OllyDbg Help, Contents

§ Instructions for Evaluation of Expressions
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Labelling
• Label subroutines and loops

o Right-click an address, Label
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Recommended Plugins
• OllyDump

o Dumps debugged process to a PE file
o Used for unpacking

• Hide Debugger
o Hides OllyDbg from debugger detection

• Command Line
o Control OllyDbg from the command line
o Simpler to just use WinDbg

• Bookmarks
o Included by default in OllyDbg
o Bookmarks memory locations
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Immunity Debugger (ImmDbg)
• Unlike OllyDbg, ImmDbg employs Python scripts and has 

an easy-to-use API

• Scripts are located in the PyCommands subdirectory 
under the install directory of ImmDbg

• Easy to create custom scripts for ImmDbg
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Good Intro to OllyDbg

https://www.youtube.com/watch?v=eNSWUAVxbzk
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END OF LECTURE. THANK YOU.


