
School of

Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 473 T1 2023
Malware and Reverse Engineering

OllyDbg
Chapter 9: “Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software”, Michael Sikorski and Andrew Honig, 2012

CYBR473-2023T1: Malware and Reverse Engineering

History

• OllyDbg was developed more than a decade ago
• First used to crack software and to develop exploits
• The OllyDbg 1.1 source code was purchased by Immunity

and rebranded as Immunity Debugger
• The two products are very similar

slide 1

CYBR473-2023T1: Malware and Reverse Engineering

Don't Use OllyDbg 2!

slide 2

LOADING
MALWARE

CYBR473-2023T1: Malware and Reverse Engineering

Ways to Debug Malware – Load
• You can load EXEs or DLLs directly into OllyDbg

• Opening and EXE
o File, Open
o Add command-line arguments if needed
o OllyDbg will stop at the entry point, WinMain, if it can be

determined
o Otherwise it will break at the entry point defined in the PE

Header
§ Configurable in Options, Debugging Options

slide 4

CYBR473-2023T1: Malware and Reverse Engineering

Ways to Debug Malware (cont.) – Attach
• If the malware is already running, you can attach OllyDbg

to the running process

• Attaching to a running process
o File, Attach
o OllyDbg breaks in and pauses the program and all threads

§ If you catch it in DLL, set a breakpoint on access to the entire code
section to get to the interesting code

slide 5

CYBR473-2023T1: Malware and Reverse Engineering

Reloading a File
• Ctrl+F2 reloads the current executable

• F2 sets a breakpoint

slide 6

THE OLLYDBG
INTERFACE

CYBR473-2023T1: Malware and Reverse Engineering

Disassembler
Highlight: next instruction to be

executed

Registers

Stack
Memory
dump

The OllyDbg Interface

slide 8

CYBR473-2023T1: Malware and Reverse Engineering

Modifying Data
• Disassembler window

o Press spacebar
• Registers or Stack

o Right-click, modify
• Memory dump

o Right-click, Binary, Edit
o Ctrl+G to go to a memory location
o Right-click a memory address in another pane and click “Follow

in dump”

slide 9

MEMORY MAP

View, Memory Map

CYBR473-2023T1: Malware and Reverse Engineering

Memory Map
• EXE and DLLs

are identified

• Double-click
any row to
show a
memory dump

• Right-click,
View in
Disassembler

slide 11

CYBR473-2023T1: Malware and Reverse Engineering

Rebasing
• Rebasing occurs when a module is not loaded at its

preferred base address
• PE files have a preferred base address

o The image base in the PE header
o Usually, the file is loaded at that address
o Most EXEs are designed to be loaded at 0x00400000

• EXEs that support Address Space Layout Randomization
(ASLR) will often be relocated

slide 12

CYBR473-2023T1: Malware and Reverse Engineering

DLL Rebasing
• DLLs are more commonly relocated

o Because a single application may import many DLLs

o Windows DLLs have different base addresses to avoid this

o Third-party DLLs often have the same preferred base address

slide 13

CYBR473-2023T1: Malware and Reverse Engineering

Absolute vs. Relative Addresses
• The first 3 instructions will work fine if relocated because

they use relative addresses

• The last one has an absolute address that will be wrong if
the code is relocated

slide 14

CYBR473-2023T1: Malware and Reverse Engineering

Fix-up Locations
• Most DLLS have a list of fix-up locations in the .reloc

section of the PE header
o These are instructions that must be changed when code is

relocated

• DLLs are loaded after the EXE and in any order
• You cannot predict where DLLs will be located in memory

if they are rebased
• Example .reloc section on next slide

slide 15

CYBR473-2023T1: Malware and Reverse Engineering

Fix-up Locations (cont.)

slide 16

CYBR473-2023T1: Malware and Reverse Engineering

DLL Rebasing
• DLLS can have their .reloc removed

o Such a DLL cannot be relocated
o Must load at its preferred base address

• Relocating DLLs is bad for performance
o Adds to load time
o So good programmers specify non-default base addresses

when compiling DLLs

slide 17

CYBR473-2023T1: Malware and Reverse Engineering

Example of DLL Rebasing Olly Memory Map
• DLL-A and DLL-B prefer location 0x100000000

slide 18

DLL-B is relocated
into a different

memory address
from its requested

location

CYBR473-2023T1: Malware and Reverse Engineering

IDA Pro
• IDA Pro is not attached to a real running process

• It doesn't know about rebasing

• If you use OllyDbg and IDA Pro at the same time, you
may get different results
o To avoid this, use the “Manual Load” option in IDA Pro
o Specify the virtual base address manually

slide 19

CYBR473-2023T1: Malware and Reverse Engineering

Viewing Threads and Stacks
• View, Threads

• Right-click a thread to “Open in CPU”, kill it, etc.

slide 20

CYBR473-2023T1: Malware and Reverse Engineering

Each Thread Has its Own Stack
• Visible in Memory Map

slide 21

CYBR473-2023T1: Malware and Reverse Engineering

ASLR is Fading
• Address Space Layout Randomization

o “ASLR is fundamentally flawed in sandboxed environments such
as JavaScript and future defenses should not rely on
randomized virtual addresses as a building block.”

• https://www.theregister.com/2021/02/26/chrome_aslr_
bypass/

slide 22

https://www.theregister.com/2021/02/26/chrome_aslr_bypass/
https://www.theregister.com/2021/02/26/chrome_aslr_bypass/

EXECUTING CODE

CYBR473-2023T1: Malware and Reverse Engineering

OllyDbg Code-Executing Options

slide 24

CYBR473-2023T1: Malware and Reverse Engineering

Run and Pause
• You could Run a program and click Pause when it's where

you want it to be

• But that's sloppy and might leave you somewhere
uninteresting, such as inside library code

• Setting breakpoints is much better

slide 25

CYBR473-2023T1: Malware and Reverse Engineering

Run and Run to Selection
• Run is useful to resume execution after hitting a

breakpoint

• Run to Selection will execute until just before the
selected instruction is executed
o If the selection is never executed, it will run indefinitely

slide 26

CYBR473-2023T1: Malware and Reverse Engineering

Execute till Return
• Pauses execution until just before the current function is

set to return

• Can be useful if you want to finish the current function
and stop

• But if the function never ends, the program will continue
to run indefinitely

slide 27

CYBR473-2023T1: Malware and Reverse Engineering

Execute till User Code
• Useful if you get lost in library code during debugging

• Program will continue to run until it hit compiled
malware code
o Typically the .text section

slide 28

CYBR473-2023T1: Malware and Reverse Engineering

Stepping Through Code
• F7—Single-step (also called step-into)

• F8—Step-over
o Stepping-over means all the code is executed, but you don't

see it happen

• Some malware is designed to fool you, by calling routines
and never returning, so stepping over will miss the most
important part

slide 29

BREAKPOINTS

CYBR473-2023T1: Malware and Reverse Engineering

Types of Breakpoints

• Software breakpoints
• Hardware breakpoints
• Conditional breakpoints
• Breakpoints on memory

• F2 – Add or remove a breakpoint

slide 31

CYBR473-2023T1: Malware and Reverse Engineering

Viewing Active Breakpoints
• View, Breakpoints, or click B

icon on toolbar

slide 32

CYBR473-2023T1: Malware and Reverse Engineering

OllyDbg Breakingpoint Options

slide 33

CYBR473-2023T1: Malware and Reverse Engineering

Saving Breakpoints
• When you close OllyDbg, it saves your breakpoints

• If you open the same file again, the breakpoints are still
available

slide 34

CYBR473-2023T1: Malware and Reverse Engineering

Software Breakpoints
• Useful for string decoders

• Malware authors often obfuscate strings
o With a string decoder that is called before each string is used

slide 35

CYBR473-2023T1: Malware and Reverse Engineering

String Decoders
• Put a breakpoint at the end of the decoder routine

• The string becomes readable on the stack
Each time you press Play in OllyDbg, the program will
execute and will break when a string is decoded for use

• This method will only reveal strings as they are used

slide 36

CYBR473-2023T1: Malware and Reverse Engineering

Conditional Breakpoints
• Breaks only when a condition is true

• Ex: Poison Ivy backdoor
o Poison Ivy allocates memory to house the shellcode it receives

from Command and Control (C&C) servers
o Most memory allocations are for other purposes and

uninteresting
o Set a conditional breakpoint at the VirtualAlloc function

in Kernel32.dll

slide 37

CYBR473-2023T1: Malware and Reverse Engineering

Normal Breakpoint
• Put a standard breakpoint at the start of the
VirtualAlloc function

• Here's the stack when it hits, showing five items:
o Return address
o 4 parameters (Address, Size, AllocationType, Protect)

slide 38

CYBR473-2023T1: Malware and Reverse Engineering

Conditional Breakpoint

slide 39

CYBR473-2023T1: Malware and Reverse Engineering

Hardware Breakpints

• Don't alter code, stack, or any target resource
• Don't slow down execution
• But you can only set 4 at a time
• Click Breakpoint, “Hardware, on Execution”
• You can set OllyDbg to use hardware breakpoints by

default in Debugging Options
o Useful if malware uses anti-debugging techniques

slide 40

CYBR473-2023T1: Malware and Reverse Engineering

Memory Breakpoints
• Code breaks on access to specified memory location

• OllyDbg supports software and hardware memory
breakpoints

• Can break on read, write, execute, or any access

• Right-click memory location, click Breakpoint, “Memory,
on Access”

slide 41

CYBR473-2023T1: Malware and Reverse Engineering

Memory Breakpoints (cont.)
• You can only set one memory breakpoint at a time

• OllyDbg implements memory breakpoints by changing
the attributes of memory blocks

• This technique is not reliable and has considerable
overhead

• Use memory breakpoints sparingly
slide 42

CYBR473-2023T1: Malware and Reverse Engineering

When is a DLL Used?

slide 43

LOADING DLLS

CYBR473-2023T1: Malware and Reverse Engineering

loaddll.exe

• DLLs cannot be executed directly

• OllyDbg uses a dummy loaddll.exe program to load
them

• Breaks at the DLL entry point DLLMain once the DLL is
loaded

• Press Play to run DLLMain and initialize the DLL for use

slide 45

CYBR473-2023T1: Malware and Reverse Engineering

Demo
• Get OllyDbg 1.10, NOT 2.00 or 2.01
• Use Win 2016 Server, 64 bit
• In OllyDbg, open

C:\Windows\SysWOW64\ws2_32.dll
• Click Yes at this box

slide 46

CYBR473-2023T1: Malware and Reverse Engineering

Demo: Calling DLL Exports
• Click Debug, Call

DLL Export – it
fails because
DLLMain has not
yet been run

• Reload the DLL
(Ctrl+F2), click Run
button once

• Click Debug, Call
DLL Export – now
it works

slide 47

CYBR473-2023T1: Malware and Reverse Engineering

Demo: Running ntohl

• Converts a 32-bit number from network to host byte
order

• Click argument 1, type in 7f000001
o 127.0.0.1 in “network” byte order

• Click “Follow in Disassembler” to see the code

• Click “Call” to run the function

• Answer in EAX
slide 48

TRACING

CYBR473-2023T1: Malware and Reverse Engineering

Tracing
• Powerful debugging technique

• Records detailed execution information

• Types of Tracing
o Standard Back Trace
o Call Stack Trace
o Run Trace

slide 50

CYBR473-2023T1: Malware and Reverse Engineering

Tracing: Standard Back Trace
• You move through the disassembler with the Step Into and

Step Over buttons

• OllyDbg is recording your movement

• Use minus (-) key on keyboard to see previous instructions
o But you won't see previous register values

• Plus (+) key takes you forward
o If you used Step Over, you cannot go back and decide to Step Into

slide 51

CYBR473-2023T1: Malware and Reverse Engineering

Tracing: Call Stack Trace
• Views the execution path to a given function

• Click View, Call Stack

• Displays the sequence of calls to reach your current
location

slide 52

CYBR473-2023T1: Malware and Reverse Engineering

Demo from EasyCTF 2017
• Simple guessing game

• Wrong answer produces an insult

slide 53

CYBR473-2023T1: Malware and Reverse Engineering

Entire main() in OllyDbg

slide 54

CYBR473-2023T1: Malware and Reverse Engineering

Step into puts
• Press F7 twice

• Click View, Call Stack

slide 55

CYBR473-2023T1: Malware and Reverse Engineering

Step Into Again
• Click View, CPU
• Press F7 three times
• Click View, Call Stack
• New function appears at top

slide 56

CYBR473-2023T1: Malware and Reverse Engineering

Return
• Click View, CPU

• Press F7 22 times, until the RETN and execute it

• Click View, Call Stack

slide 57

CYBR473-2023T1: Malware and Reverse Engineering

A Deeper Call Stack

slide 58

CYBR473-2023T1: Malware and Reverse Engineering

Tracing: Run Trace
• Code runs, and OllyDbg saves every executed instruction

and all changes to registers and flags

• Highlight code, right-click, Run Trace, Add Selection

• After code executes, View, Run Trace
o To see instructions that were executed
o + and - keys to step forward and backwards

slide 59

CYBR473-2023T1: Malware and Reverse Engineering

Demo: Run Trace of 00000.exe

• Highlight code, right-click, Run Trace, Add Selection

slide 60

CYBR473-2023T1: Malware and Reverse Engineering

Demo: Run Trace of 00000.exe (cont.)

• Run code
• Step back with - and forward with +

slide 61

CYBR473-2023T1: Malware and Reverse Engineering

Trace Into and Trace Over
• Buttons below “Options”

• Easier to use than Add Selection

• If you don't set breakpoints, OllyDbg will attempt to
trace the entire program, which could take a long time
and a lot of memory

slide 62

CYBR473-2023T1: Malware and Reverse Engineering

Debug, Set Condition
• Traces until a condition

hits

• This condition catches
Poison Ivy shellcode,
which places code in
dynamically allocated
memory below 0x400000

slide 63

EXCEPTION HANDLING

CYBR473-2023T1: Malware and Reverse Engineering

When an Exception Occurs
• OllyDbg will stop the program

• You have these options to pass the exception into the
program:
o Shift+F7: Step into exception
o Shift+F8: Step over exception
o Shift+F9: Run exception handler

• Often you just ignore all exceptions in malware analysis
o We are not trying to fix problems in code

slide 65

PATCHING

CYBR473-2023T1: Malware and Reverse Engineering

Binary Edit

slide 67

CYBR473-2023T1: Malware and Reverse Engineering

Fill
• Fill with 00

• Fill with NOP (0x90)
o Used to skip instructions
o e.g. to force a branch

slide 68

CYBR473-2023T1: Malware and Reverse Engineering

Saving Patched Code
• Right-click disassembler window after patching

o Copy To Executable, All Modifications, Save File
o Copy All

• Right-click in new window
o Save File

slide 69

ANALYSING
SHELLCODE

Undocumented technique

CYBR473-2023T1: Malware and Reverse Engineering

Easy Way to Analyse Shellcode
• Copy shellcode from a hex editor to clipboard

• Within memory map, select a region of type “Priv”
(Private memory)

• Double-click rows in memory map to show a hex dump
o Find a region of hundreds of consecutive zeroes

• Right-click chosen region in Memory Map, Set Access,
Full Access (to clear NX bit)

slide 71

CYBR473-2023T1: Malware and Reverse Engineering

Analysing Shellcode
• Highlight a region of zeroes, Binary, Binary Paste

• Set EIP to location of shellcode
o Right-click first instruction, New Origin Here

slide 72

ASSISTANCE
FEATURES

CYBR473-2023T1: Malware and Reverse Engineering

Log
• View, Log

o Shows steps to
reach here

slide 74

CYBR473-2023T1: Malware and Reverse Engineering

Watches Window

• View, Watches
o Watch the value of an expression
o Press SPACEBAR to set expression
o OllyDbg Help, Contents

§ Instructions for Evaluation of Expressions

slide 75

CYBR473-2023T1: Malware and Reverse Engineering

Labelling
• Label subroutines and loops

o Right-click an address, Label

slide 76

PLUG-INS

CYBR473-2023T1: Malware and Reverse Engineering

Recommended Plugins
• OllyDump

o Dumps debugged process to a PE file
o Used for unpacking

• Hide Debugger
o Hides OllyDbg from debugger detection

• Command Line
o Control OllyDbg from the command line
o Simpler to just use WinDbg

• Bookmarks
o Included by default in OllyDbg
o Bookmarks memory locations

slide 78

SCRIPTABLE
DEBUGGING

CYBR473-2023T1: Malware and Reverse Engineering

Immunity Debugger (ImmDbg)
• Unlike OllyDbg, ImmDbg employs Python scripts and has

an easy-to-use API

• Scripts are located in the PyCommands subdirectory
under the install directory of ImmDbg

• Easy to create custom scripts for ImmDbg

slide 80

CYBR473-2021T2: Malware and Reverse Engineering

Good Intro to OllyDbg

https://www.youtube.com/watch?v=eNSWUAVxbzk

slide 81

https://www.youtube.com/watch?v=eNSWUAVxbzk

END OF LECTURE. THANK YOU.

