
School of

Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

CYBR 473 T2 2021
Malware and Reverse Engineering

Ian Welch, Harith Al-Sahaf

Kernel Debugging with WinDbg
Chapter 10: “Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software”, Michael Sikorski and Andrew Honig, 2012

CYBR473-2022T1: Malware and Reverse Engineering

WinDbg vs. OllyDbg
• OllyDbg is the most popular user-mode debugger for

malware analysts

• WinDbg can be used in either user-mode or kernel-mode

• This lecture explores ways to use WinDbg for kernel
debugging and rootkit analysis

slide 1

DRIVERS AND
KERNEL CODE

CYBR473-2022T1: Malware and Reverse Engineering

Device Drivers
• Windows device drivers allow third-party developers to

run code in the Windows kernel

• Drivers are difficult to analyse
o They load into memory, stay resident, and respond to requests

from applications

• Applications do not directly access kernel drivers
o They access device objects which send requests to particular

devices

slide 3

CYBR473-2022T1: Malware and Reverse Engineering

Devices
• Devices are not physical

hardware components
o They are software

representations of those
components

• A driver creates and destroys
devices, which can be
accessed from user space

slide 4

http://www.sharetechnote.com/html/OS_DeviceDriver.html

http://www.sharetechnote.com/html/OS_DeviceDriver.html

CYBR473-2022T1: Malware and Reverse Engineering

Example: USB Flash Drive
• User plugs in flash drive
• Windows creates the F: drive device object
• Applications can now make requests

to the F: drive (such as read and write)
o They will be sent to the driver for that

USB flash drive
• User plugs in a second flash drive

o It may use the same driver, but applications
access it through the G: drive

slide 5

https://www.digitalcitizen.life/how-unlock-bitlocker-encrypted-flash-drive/

https://www.digitalcitizen.life/how-unlock-bitlocker-encrypted-flash-drive/

CYBR473-2022T1: Malware and Reverse Engineering

Loading DLLs vs. Loading Drivers
• Loading DLLs (review)

o DLLs are loaded into processes
§ DLLs export functions that can be used by applications
§ Using the export table
§ When a function loads or unloads the library, it calls DLLMain

• Loading Drivers
o Drivers must be loaded into the kernel

§ When a driver is first loaded, its DriverEntry procedure is called
§ To prepare callback objects
§ Just like DLLMain for DLLs

slide 6

CYBR473-2022T1: Malware and Reverse Engineering

Defining a Callback Object
• A driver can create a callback object, through which

other drivers can request notification of conditions
defined by the
creating driver.

slide 7

The steps involved in
defining a callback

object

CYBR473-2022T1: Malware and Reverse Engineering

DLLs vs. Drivers
• DLL

o Loads into memory when a process is launched
o Executes DLLMain at loadtime
o Prepares the export table

• Driver
o Loads into kernel when hardware is added
o Executes DriverEntry at loadtime
o Prepares callback functions and callback objects

slide 8

CYBR473-2022T1: Malware and Reverse Engineering

DriverEntry
• DLLs expose functionality through the export table; drivers

don’t
• Drivers must register the address for callback functions

o They will be called when a user-space software component requests
a service

o DriverEntry routine performs this registration
o Windows creates a driver object structure, passes it to DriverEntry

which fills it with callback functions
o DriverEntry then creates a device that can be accessed from user-

land

slide 9

CYBR473-2022T1: Malware and Reverse Engineering

Example: Normal Read
• Normal read request

o User-mode application obtains a file handle to device

o Calls ReadFile on that handle

o Kernel processes ReadFile request

o Invokes the driver's callback function handling I/O

slide 10

CYBR473-2022T1: Malware and Reverse Engineering

Malicious Request
• Most common request from malware is DeviceIoControl

o A generic request from a user-space module to a device
managed by a driver

o User-space program passes in an arbitrary-length buffer of
input data

o Received an arbitrary-length buffer of data as output

slide 11

CYBR473-2022T1: Malware and Reverse Engineering

How User-mode Calls are Handled by the Kernel

slide 12

!

CYBR473-2022T1: Malware and Reverse Engineering

Ntoskrnl.exe & Hal.dll

• Malicious drivers rarely control hardware

• They interact with Ntoskrnl.exe & Hal.dll
o Ntoskrnl.exe has code for core OS functions
o Hal.dll has code for interacting with main hardware

components

• Malware will import functions from one or both of these
files so it can manipulate the kernel

slide 13

SETTING UP KERNEL
DEBUGGING

CYBR473-2022T1: Malware and Reverse Engineering

VMware
• In the virtual machine, enable kernel debugging

• Configure a virtual serial port between VM and host

• Configure WinDbg on the host machine

slide 15

CYBR473-2022T1: Malware and Reverse Engineering

Boot.ini

• The book activates kernel debugging by editing
Boot.ini

• But Microsoft abandoned that system after Windows XP
• The new system uses bcdedit

slide 16

CYBR473-2022T1: Malware and Reverse Engineering

Installing WinDbg
• You can get Debugging Tools for Windows as part of a development kit or as a

standalone tool set:
o As part of the WDK

Debugging Tools for Windows is included in the Windows Driver Kit (WDK). To get the WDK, see
Download the Windows Driver Kit (WDK).

o As part of the Windows SDK
Debugging Tools for Windows is included in the Windows Software Development Kit (SDK). To
download the installer or an ISO image, see Windows 10 SDK on Windows Dev Center.

o As a standalone tool set
You can install the Debugging Tools for Windows alone, without the Windows SDK or WDK, by
starting installation of the Windows SDK and then selecting only Debugging Tools for Windows in the
list of features to install (and clearing the selection of all other features). To download the installer or
an ISO image, see Windows 10 SDK on Windows Dev Center.

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/

slide 17

https://docs.microsoft.com/en-us/windows-hardware/drivers/download-the-wdk
https://developer.microsoft.com/windows/downloads/windows-10-sdk
https://developer.microsoft.com/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/

CYBR473-2022T1: Malware and Reverse Engineering

Installing WinDbg (cont.)

slide 18

CYBR473-2022T1: Malware and Reverse Engineering

Run LiveKD

slide 19

CYBR473-2022T1: Malware and Reverse Engineering

Run LiveKD (cont.)

slide 20

USING WinDbg

Command-line Commands

CYBR473-2022T1: Malware and Reverse Engineering

Reading from Memory and Editing Memory
• Reading: dx addressToRead
• Editing: ex addressToWrite dataToWrite
• x can be

o a Displays/Writes as ASCII text
o u Displays/Writes as Unicode text
o d Displays/Writes as 32-bit double words

• da 0x401020
o Shows the ASCII text starting at 0x401020

slide 22

CYBR473-2022T1: Malware and Reverse Engineering

Using Arithmetic Operators
• Usual arithmetic operators + - / *

• dwo reveals the value at a 32-bit location pointer

• du dwo (esp+4)
o Shows the first argument for a function, as a wide character

string

slide 23

CYBR473-2022T1: Malware and Reverse Engineering

Setting Breakpoints

• bp sets breakpoints
• You can specify an action to be performed when the

breakpoint is hit
• g tells it to resume running after the action
• bp GetProcAddress "da dwo(esp+8); g"

o Breaks when GetProcAddress is called, prints out the
second argument, and then continues

o The second argument is the function name

slide 24

CYBR473-2022T1: Malware and Reverse Engineering

No Breakpoints with LiveKD
• LiveKD works from a memory dump

• It's read-only

• So you can't use breakpoints

slide 25

CYBR473-2022T1: Malware and Reverse Engineering

Listing Modules
• lm

o Lists all modules loaded into a process
§ Including EXEs and DLLs in user space
§ And the kernel drivers in kernel mode

o As close as WinDbg gets to a memory map
• lm m disk

o Shows the disk driver

slide 26

CYBR473-2022T1: Malware and Reverse Engineering

Reading from Memory
• dd nt
o Shows the

start of
module “nt”

• dd nt L10
o Shows the first

0x10 words of
“nt”

slide 27

CYBR473-2022T1: Malware and Reverse Engineering

Online Help
• .hh dd

o Shows help about “dd”
command

o But there are no examples

slide 28

CYBR473-2022T1: Malware and Reverse Engineering

More Commands
• r
o Dump all

registers

slide 29

MICROSOFT
SYMBOLS

CYBR473-2022T1: Malware and Reverse Engineering

Symbols are Labels
• Including symbols lets you use

o MmCreateProcessAddressSpace

• instead of
o 0x8050f1a2

slide 31

CYBR473-2022T1: Malware and Reverse Engineering

Searching for Symbols
• moduleName!symbolName

o Can be used anywhere an address is expected
• moduleName

o The EXE, DLL, or SYS filename (without extension)
• symbolName

o Name associated with the address
• ntoskrnl.exe is an exception, and is named nt

o Ex: u nt!NtCreateProcess
§ Unassembles that function (disassembly)

slide 32

CYBR473-2022T1: Malware and Reverse Engineering

Demo
• Try these

o u nt!ntCreateProcess
o u nt!ntCreateProcess L10
o u nt!ntCreateProcess L20

slide 33

CYBR473-2022T1: Malware and Reverse Engineering

Deferred Breakpoints
• bu newModule!exportedFunction

o Will set a breakpoint on exportedFunction as soon as a module
named newModule is loaded

• $iment
o Function that finds the entry point of a module

• bu $iment(driverName)
o Breaks on the entry point of the driver before any of the

driver's code runs

slide 34

CYBR473-2022T1: Malware and Reverse Engineering

Searching with x

• You can search for functions or symbols using wildcards
• x nt!*CreateProcess*

o Displays exported functions & internal functions

slide 35

CYBR473-2022T1: Malware and Reverse Engineering

Listing Closest Symbol with ln

• Helps in figuring out where a call goes
• ln address

slide 36

Closest matches

Exact match

CYBR473-2022T1: Malware and Reverse Engineering

Viewing Structure Information with dt

• Microsoft symbols include type information for many
structures
o Including undocumented internal types
o They are often used by malware

• dt moduleName!symbolName

• dt moduleName!symbolName address
o Shows structure with data from address

slide 37

CYBR473-2022T1: Malware and Reverse Engineering

Example: Viewing Type Information for a Structure

slide 38

CYBR473-2022T1: Malware and Reverse Engineering

Demo
• Try these
o dt nt!_DRIVER_OBJECT
o dt nt!_DEVICE_OBJECT

slide 39

CYBR473-2022T1: Malware and Reverse Engineering

Show Specific Values for the “Beep” Driver

slide 40

CYBR473-2022T1: Malware and Reverse Engineering

Initialization Function
• The DriverInit function is called first when a driver is

loaded
o See labelled line in previous slide

• Malware will sometimes place its entire malicious
payload in this function

slide 41

CYBR473-2022T1: Malware and Reverse Engineering

Configuring Windows Symbols
• If your debugging machine is connected to an always-on

broadband link, you can configure WinDbg to
automatically download symbols from Microsoft as
needed

• They are cached locally

• File, Symbol File Path
o SRC*c:\websymbols*http://msdl.microsoft.com
/download/symbols

slide 42

CYBR473-2022T1: Malware and Reverse Engineering

Manually Downloading Symbols

slide 43

KERNEL
DEBUGGING
IN PRACTICE

CYBR473-2022T1: Malware and Reverse Engineering

Kernel Mode and User Mode Functions

• We'll examine a program that writes to files from kernel
space
o An unusual thing to do
o Fools some security products
o Kernel mode programs cannot call user-mode functions like
CreateFile and WriteFile

o Must use NtCreateFile and NtWriteFile

slide 45

CYBR473-2022T1: Malware and Reverse Engineering

User-Space Code
• Creates a service with the CreateService function
dwServiceType is 0x01 (Kernel driver)

slide 46

Creating a service to
load a kernel driver

CYBR473-2022T1: Malware and Reverse Engineering

User-Space Code (cont.)
• Not shown: edi being set to

o \\.\FileWriter\Device

slide 47

Obtaining a handle to
a device object

CYBR473-2022T1: Malware and Reverse Engineering

User-Space Code (cont.)
• Once the malware has a handle to the device, it uses the
DeviceIoControl function to send data to the
driver.

slide 48

Using DeviceIoControl
to communicate from user

space to kernel space

CYBR473-2022T1: Malware and Reverse Engineering

Kernel-Mode Code

• Set WinDbg to Verbose mode (View, Verbose Output)
o Doesn't work with LiveKD

• You'll see every kernel module that loads
• Kernel modules are not loaded or unloaded often

o Any loads are suspicious
o Except Kmixer.sys in VMware machines

slide 49

CYBR473-2022T1: Malware and Reverse Engineering

Kernel-Mode Code (cont.)
• Example: we see FileWriter.sys driver has been

loaded in the kernel debugging window. Likely, this is the
malicious driver.

ModLoad: f7b0d000 f7b0e780 FileWriter.sys

slide 50

CYBR473-2022T1: Malware and Reverse Engineering

Kernel-Mode Code (cont.)
• !drvobj command shows driver object

slide 51

CYBR473-2022T1: Malware and Reverse Engineering

Kernel-Mode Code (cont.)
• dt command

shows structure

slide 52

CYBR473-2022T1: Malware and Reverse Engineering

Kernel-Mode Filenames
• Tracing this function, it eventually creates this file

o \DosDevices\C:\secretfile.txt

• This is a fully qualified object name
o Identifies the root device, usually \DosDevices

slide 53

CYBR473-2022T1: Malware and Reverse Engineering

Finding Driver Objects
• Applications work with devices, not drivers
• Look at user-space application to identify the interesting

device object
• Use device object in User-Mode to find driver object in

Kernel-Mode
• Use !devobj to find out more about the device object
• Use !devhandles to find application that use the

driver

slide 54

ROOTKITS

CYBR473-2022T1: Malware and Reverse Engineering

Rootkit Basics
• Rootkits modify the internal functionality of the OS to

conceal themselves
o Hide processes, network connections, and other resources

from running programs
o Difficult for antivirus, administrators, and security analysts to

discover their malicious activity
• Most rootkits modify the kernel
• Most popular method:

o System Service Descriptor Table (SSDT) hooking

slide 56

CYBR473-2022T1: Malware and Reverse Engineering

System Service Descriptor Table (SSDT)
• Used internally by Microsoft

o To look up function calls into the kernel
o Not normally used by third-party applications or drivers

• Only three ways for user space to access kernel code
o SYSCALL
o SYSENTER

§ Used by modern versions of Windows
§ Function code stored in EAX register

o INT 0x2E

slide 57

CYBR473-2022T1: Malware and Reverse Engineering

Example from ntdll.dll

• EAX set to 0x25
• Stack pointer saved in EDX
• SYSENTER is called

slide 58

CYBR473-2022T1: Malware and Reverse Engineering

SSDT Table Entries
• Rootkit changes the values in the SSDT so rootkit code is

called instead of the intended function
• 0x25 would be changed to a malicious driver's function

slide 59

Several entries of the SSDT
table showing

NtCreateFile

CYBR473-2022T1: Malware and Reverse Engineering

Hooking NtCreateFile

• Rootkit calls the original NtCreateFile, then
removes files it wants to hide
o This prevents applications from getting a handle to the file

• Hooking NtCreateFile alone won't hide a file from
DIR, however

slide 60

CYBR473-2022T1: Malware and Reverse Engineering

Rootkit Analysis in Practice
• Simplest way to detect SSDT hooking

o Just look at the SSDT
o Look for values that are unreasonable
o In this case, ntoskrnl.exe starts at address 804d7000 and

ends at 806cd580
o ntoskrnl.exe is the Kernel!

• lm m nt
o Lists modules matching “nt” (Kernel modules)
o Shows the SSDT table

slide 61

CYBR473-2022T1: Malware and Reverse Engineering

SSDT Table
• Marked entry is hooked
• To identify it, examine a clean system's SSDT

slide 63

A sample SSDT table
with one entry

overwritten by a rootkit

CYBR473-2022T1: Malware and Reverse Engineering

Finding the Malicious Driver
• lm

o Lists open modules
o In the kernel, they are all drivers

slide 64

Using the lm command to
find which drive contains

a particular address

CYBR473-2022T1: Malware and Reverse Engineering

Listing of the Rootkit Hook Function

slide 65

CYBR473-2022T1: Malware and Reverse Engineering

Interrupts
• Interrupts allow hardware to trigger software events

• Driver calls IoConnectInterrupt to register a
handler for an interrupt code

• Specifies an Interrupt Service Routine (ISR)
o Will be called when the interrupt code is generated

• Interrupt Descriptor Table (IDT)
o Stores the ISR information
o !idt command shows the IDT

slide 66

CYBR473-2022T1: Malware and Reverse Engineering

A Sample IDT

Interrupts going to
unnamed, unsigned, or
suspicious drivers could

indicate a rootkit or
other malicious

software.

slide 67

CYBR473-2022T1: Malware and Reverse Engineering

Loading Drivers
• If you want to load a driver to test

it, you can download the OSR Driver
Loader tool

slide 68

CYBR473-2022T1: Malware and Reverse Engineering

Kernel Issues for Windows Vista, Windows 7, and x64 Versions

• Uses BCDedit instead of boot.ini

• x64 versions starting with XP have PatchGuard
o Prevents third-party code from modifying the kernel
o Including kernel code itself, SSDT, IDT, etc.
o Can interfere with debugging, because debugger patches code

when inserting breakpoints

• There are 64-bit kernel debugging tools

slide 69

CYBR473-2022T1: Malware and Reverse Engineering

Driver Signing
• Enforced in all 64-bit versions of Windows starting with

Vista

• Only digitally signed drivers will load

• Effective protection!

• Kernel malware for x64 systems is practically nonexistent
o You can disable driver signing enforcement by specifying
nointegritychecks in BCDEdit

slide 70

END OF LECTURE. THANK YOU.

