
Malware-Focused Network Signatures
CYBR473 – Malware and Reverse Engineering (2024/T1)

Lecturers: Arman Khouzani, Alvin Valera

Victoria University of Wellington – School of Engineering and Computer Science

Table of contents

1. Network Countermeasures

2. Safely Investigate an Attacker Online

3. Content-Based Network Countermeasures

4. Combining Dynamic and Static Analysis Techniques

5. Understanding the Attacker’s Perspective

1

Reading Material

▶ Part IV: Malware Functionality

▷ Ch.14: Malware-Focused
Network Signatures

“Practical Malware Analysis: The
Hands-on Guide to Dissecting
Malicious Software”, Michael
Sikorski and Andrew Honig, 2012

2

Objectives

Malware makes use of network connectivity.

▷ Weak point for malware if we control ingress and egress

Countermeasures

▷ Detect or prevent malicious activity

▷ Need to understand malware use of networks

▷ Challenges faced by malware authors

▷ How these can be used

3

Network Countermeasures

Network Countermeasures

Safely Investigate an Attacker Online

Content-Based Network Countermeasures

Combining Dynamic and Static Analysis Techniques

Understanding the Attacker’s Perspective

4

Malware Use of Network

Malware uses network for:

▷ downloading additional malware

▷ exfiltration of stolen data

▷ command and control – a.k.a. C2 – communication: retrieval or
sending of instructions to trigger specific functions

▷ lateral movement (exploring the network to progressively find
targets and subsequently gaining access to it once having an
initial foothold)

5

Network Countermeasures

Based on basic network indicators (first to be analysed):

▷ Firewalls and routers can be used to restrict access to a network
based on IP addresses and ports.

▷ DNS servers can be configured to reroute known malicious
domains to an internal host, known as a sinkhole.

▷ Proxy servers can be configured to detect or prevent access to
specific domains.

6

Network Countermeasures

Content-based countermeasures, enabled e.g. by intrusion detection
systems (IDS), intrusion prevention systems (IPS), email/web proxies.

Difference between IDS/IPS:

▷ IDS is designed to merely detect the malicious traffic

▷ IPS is designed to detectmalicious traffic and prevent it from
travelling over the network.

Signatures are used to detect more than just intrusions:

- scanning

- service enumeration and profiling

- nonstandard use of protocols

- beaconing from installed malware

7

Observing the Malware in Its Natural Habitat

The best way to start network-focused malware analysis is to mine
the logs, alerts, and packet captures that were already generated by
the malware (coming from real networks, rather than from a lab
environment). Because:

▷ Live-captured info provide a view of a malware’s true behaviour,
as malware can be programmed to detect lab environments.

▷ Real traffic provides info at both ends (client and server) whereas
in a lab environment, we typically have access to only one end.

▷ When passively reviewing information, there is no risk that your
analysis activities will be leaked to the attacker.

8

OPSEC = Operations Security

OPSEC, a term used by the government and military, describes a
process of preventing adversaries from obtaining sensitive info.

▷ Certain actions of malware investigators can inform the malware
author that they have identified the malware, or may even reveal
personal details of the investigator to the attacker.

▷ If attackers are aware that they are being investigated, they may
change tactics and effectively disappear.

9

OPSEC

How malware can find out that it is investigated:

▷ Send a targeted phishing (known as spear-phishing) email with a
link to a specific individual and watch for access attempts to that
link from IP addresses outside the expected geographical area.

▷ Create an encoded link in a blog comment, effectively creating a
private but publicly accessible infection audit trail.

▷ Embed an unused domain in malware and watch for attempts to
resolve the domain.

10

Safely Investigate an Attacker
Online

Network Countermeasures

Safely Investigate an Attacker Online

Content-Based Network Countermeasures

Combining Dynamic and Static Analysis Techniques

Understanding the Attacker’s Perspective

11

Indirection Tactics

▷ Use Tor, an open proxy, or a web-based anonymizer for
anonymity, although it may give a clue that you are trying to hide

▷ You can hide the precise location of a dedicated machine in
several ways, such as the following:

- using a cellular connection
- tunnelling via SSH or a VPN through a remote infrastructure
- using an ephemeral VM in a cloud service, such as Amazon EC2

12

Getting IP Address and Domain Information

DNS translates domain names like www.yahoo.com into IP
addresses (and back).

Malware also uses DNS to maintain flexibility and robustness when
hosting its malicious activities.

When a domain name is registered, the domain, its name servers,
relevant dates, and contact information for the entity who registered
the name is stored in a domain registrar.

DNS information represents the mapping between a domain name
and an IP address. Additionally, metadata is available, including
blacklists (which can apply to IP addresses or domain names) and
geographical information (which applies only to IP addresses).

13

Getting IP Address and Domain Information

Types of information available about DNS domains and IP addresses

14

Getting IP Address and Domain Information

While both of the domain and IP registries can be queried manually
using command-line tools, using websites has several advantages:

▷ Many will do follow-on lookups automatically.
▷ They provide a level of anonymity.
▷ They provide additional metadata based on historical info or
other sources, including blacklists and geographical information.

Three lookup sites deserve special mention:

▷ DomainTools (www.domaintools.com/)
Provides historical whois records, reverse IP lookups showing all
the domains that resolve to a particular IP address, and reverse
whois, allowing lookups based on contact information metadata.

▷ RobTex (www.robtex.com/)
▷ BFK DNS logger (www.bfk.de/bfk_dnslogger_en.html)
Uses passive DNS monitoring data. However “Due to the EU
GDPR policy, this service has been shut down until further notice.”

15

www.domaintools.com/
www.robtex.com/
www.bfk.de/bfk_dnslogger_en.html

Content-Based Network
Countermeasures

Network Countermeasures

Safely Investigate an Attacker Online

Content-Based Network Countermeasures

Combining Dynamic and Static Analysis Techniques

Understanding the Attacker’s Perspective

16

Content-Based Network Countermeasures

Basic indicators such as IP and domain names can be valuable for
defending against a specific version of malware, but attackers are
adept at quickly moving to different addresses or domains.

Indicators based on content tend to be more valuable and longer
lasting, since they use more fundamental characteristics of malware.

Signature-based IDSs are the oldest and most commonly deployed
systems for detecting malicious activity via network traffic. IDS
detection depends on knowledge about what malicious activity looks
like, i.e., its signature, to detect it when it happens again.

An ideal signature can send an alert every time something malicious
happens (true positive), but will not create an alert for anything that
looks like malware but is actually legitimate (false positive).

17

Intrusion Detection with Snort

One of the most popular IDSs is called Snort.

Snort is used to create a signature or rule that links together a series
of elements (called rule options) that must be true before it fires.

▷ payload rule options: identify content elements
▷ nonpayload rule options: identify elements that are not content
related, e.g., certain flags, specific values of TCP or IP headers,
size of the packet payload. Examples:

- flow:established,to_client packets that are a part of a
TCP session that originate at a server and are destined for a client.

- dsize:200, which selects packets that have 200 bytes of payload.

18

Intrusion Detection with Snort

Let’s create a basic Snort rule to detect the initial malware example.

When browsers and other HTTP applications make requests, they
populate a User-Agent header field. A typical value may look like
Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1).
This provides information about the version of the browser and OS.

The User-Agent used by our malware is Wefa7e, which is distinctive
and can be used to create a signature:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"TROJAN Malicious User-Agent";

content:"|0d 0a|User-Agent\: Wefa7e";
classtype:trojan-activity; sid:2000001; rev:1;)

19

Intrusion Detection with Snort

Snort Rule’s keywords and descriptions

Keyword Description

msg The message to print with an alert or log entry
content Searches for specific content in the packet payload

(see the discussion following the table)
classtype General category to which rule belongs
sid Unique identifier for rules
rev With sid, uniquely identifies rule revisions

20

Intrusion Detection with Snort

Snort rules are composed of two parts:

▶ a rule header, and

▶ rule options.

The rule header contains the rule action (typically alert), protocol,
source and destination IP, and source and destination ports.

Snort rules use variables to allow customization of its environment:

▷ $HOME_NET and $EXTERNAL_NET variables are used to specify
internal and external network IP address ranges.

▷ $HTTP_PORTS ports that should be interpreted as HTTP traffic.

$HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS header
matches outbound traffic destined for HTTP ports.

21

Intrusion Detection with Snort

Within the content term, the pipe symbol | indicates the start and end
of hexadecimal notation. Thus, |0d 0a| represents the break
between HTTP headers. So |0d 0a|User-Agent Wefa7e
matches the HTTP header field User-Agent: Wefa7e.

We have IP addresses to block at firewalls, a domain name to block at
the proxy, and a network signature to load into the IDS. Stopping here,
however, would be a mistake, since the current measures provide only
a false sense of security.

A malware analyst must strike a balance between expediency and
accuracy. For network-based malware analysis, the expedient route is
to run malware in a sandbox and assume the results are sufficient.
The accurate route is to fully analyze malware function by function.

22

Intrusion Detection with Snort: Taking a Deeper Look

Suppose that in fact we had seen two values for the User-Agent
strings in real traffic: Wefa7e and Wee6a3.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN WindowsEntSuite FakeAV Dynamic User-Agent";
flow:established,to_server;
content:"|0d 0a|User-Agent\: We"; isdataat:6,relative;
content:"|0d 0a|";
distance:0; pcre:"/User-Agent\: We[a-z0-9]{4}\x0d\x0a/";
classtype:trojan-activity;
reference:url,www.threatexpert.com/report.aspx?md5=

d9bcb4e4d650a6ed4402fab8f9ef1387;
sid:2010262; rev:1;)

23

Intrusion Detection with Snort: Taking a Deeper Look

Additional Snort rule’s keywords and descriptions.

Keyword Description

flow Specifies characteristics of the TCP flow being in-
spected, such as whether a flow has been established
and whether packets are from the client or the server.

isdataat Verifies that data exists at a given location (optionally
relative to the last match)

distance Modifies the content keyword; indicates the number
of bytes that should be ignored past the most recent
pattern match

pcre A Perl Compatible Regular Expression that indicates
the pattern of bytes to match

reference A reference to an external system

24

Intrusion Detection with Snort: Taking a Deeper Look

The core of the rule is simply the User-Agent string where We is
followed by exactly four alphanumeric characters (We[a-z0-9]{4}).
In the Perl Compatible Regular Expressions (PCRE) notation used by
Snort, the following characters are used:

▷ Square brackets ([and]) indicate a set of possible characters.

▷ Curly brackets ({ and }) indicate the number of characters.

▷ Hexadecimal notation for bytes is of the form \xHH.

flow:established,to_server; ensures that the rule fires only
for client-generated traffic within an established TCP session.

25

Intrusion Detection with Snort: Taking a Deeper Look

However, this rule creates false positives associated with the use of
the popular Webmin software. So the rule is modified to the following:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN WindowsEntSuite FakeAV Dynamic User-Agent";
flow:established,to_server;
content:"|0d 0a|User-Agent|3a| We"; isdataat:6,relative;
content:"|0d 0a|"; distance:0;
content:!"User-Agent|3a| Webmin|0d 0a|";
pcre:"/User-Agent\: We[a-z0-9]{4}\x0d\x0a/";
classtype:trojan-activity;
reference:url,www.threatexpert.com/report.aspx?md5=

d9bcb4e4d650a6ed4402fab8f9ef1387;
reference:url,doc.emergingthreats.net/2010262;
reference:url,www.emergingthreats.net/cgi-bin/

cvsweb.cgi/sigs/VIRUS/TROJAN_WindowsEnterpriseFakeAV;
sid:2010262; rev:4;)

26

Intrusion Detection with Snort: Taking a Deeper Look

content:!"User-Agent|3a| Webmin|0d 0a|": bang symbol !
means the rule triggers only if the content described is not present.

This example illustrates several attributes typical of the
signature-development process:

▷ Most signatures are created based on analysis of the network
traffic, rather than the malware that generates the traffic.

▷ The uniqueness of the pattern is tested by running the signature
across real traffic to ensure that it is free of false positives.

To ensure that we have a more robust sample, we can repeat the
dynamic analysis of the malware many times.

27

Intrusion Detection with Snort: Taking a Deeper Look

Let’s imagine the following list of User-Agent strings are generated:

We4b58 We7d7f Wea4ee We70d3 Wea508 We6853 We3d97
We8d3a Web1a7 Wed0d1 We93d0 Wec697 We5186 We90d8
We9753 We3e18 We4e8f We8f1a Wead29 Wea76b Wee716

The results appear to use a smaller character set than specified by
/User-Agent We[a-z0-9]40d0a/: the results suggest that the
characters are limited to a–f rather than a–z. This suggests that
somewhere binary values are converted to hex representations.

As an additional thought experiment, imagine that the results from
multiple runs resulted in the following User-Agent strings instead:

WWfbcc5 Wf4abd Wea4ee Wfa78f Wedb29 W101280 W101e0f
Wfa72f Wefd95 Wf617a Wf8a9f Wf286f We9fc4 Wf4520
Wea6b8 W1024e7 Wea27f Wfd1c1 W104a9b Wff757 Wf2ab8

28

Intrusion Detection with Snort: Taking a Deeper Look

So, the signature is not ideal given the User-Agent can start with Wf
and W1 too, in addition to We, and could be seven characters long.

So, dynamically generating additional samples allows an analyst to
make more informed assumptions about the underlying code.

It is also helpful to have at least two systems generating sample
traffic, as malware may use some host attribute as an input.

E.g., multiple runs on hosts 1 and 2 may produce the following:

Wefd95 Wefd95 Wefd95 Wefd95 Wefd95 Wefd95 Wefd95 Wefd95 Wefd95

We9753 We9753 We9753 We9753 We9753 We9753 We9753 We9753 We9753

29

Combining Dynamic and Static
Analysis Techniques

Network Countermeasures

Safely Investigate an Attacker Online

Content-Based Network Countermeasures

Combining Dynamic and Static Analysis Techniques

Understanding the Attacker’s Perspective

30

Combining Dynamic and Static Analysis Techniques

So far, we have been using either existing data or output from
dynamic analysis to inform the generation of our signatures.

While such measures are expedient and generate information quickly,
they sometimes fail to identify the deeper characteristics of the
malware that can lead to more accurate and longer-lasting signatures.

In general, there are two objectives of deeper analysis:

▷ full coverage of functionality: involves providing new inputs (in
dynamic analysis) so that the code continues down unused
paths, to determine what the malware is expecting to receive.

▷ understanding functionality, including inputs and outputs: static
analysis can be used to see where and how content is generated,
and to predict the behaviour of malware. Dynamic analysis can
then be used to confirm the expected behaviour.

31

The Danger of Overanalysis

If the goal of malware analysis is to develop effective network
indicators, then you don’t need to understand every block of code.

Hierarchy of Malware Analysis Levels

Analysis level Description

Surface analysis An analysis of initial indicators, equivalent to
sandbox output

Communication
method coverage

An understanding of the code for each type of
communication technique

Operational
replication

The ability to create a tool that allows for full
operation of the malware (a server-based con-
troller, for example)

Code coverage An understanding of every block of code

To develop robust network indicators, we must reach a level between
“communication method coverage” and “operational replication”. 32

Hiding in Plain Sight

Signatures should differentiate between regular traffic and malware’s.
This is a challenge: Malware has evolved to evade detection by trying
to blend in with the background, using the following techniques.

▷ Mimicking Existing Protocols:

▷ Using Existing Infrastructure

▷ Leveraging Client-Initiated Beaconing

33

Hiding in Plain Sight: Attackers Mimic Existing Protocols

Mimicking Existing Protocols:

Attackers use the most popular communication protocols, so that
their malicious activity is more likely to get lost in the crowd. E.g., it is
difficult to monitor the large amount of traffic using HTTP, HTTPS, and
DNS. Also, they are less likely to be blocked, due to the potential
consequences of accidentally blocking a lot of normal traffic.

Attackers often use HTTP for beaconing, as the beacon is basically a
request for further instructions, like the HTTP GET request, and they
use HTTPS to hide the nature and intent of the communications.

34

Hiding in Plain Sight: Attackers Mimic Existing Protocols

Attackers also abuse standard protocols, e.g., Malware attempting to
pass a user’s password could perform a DNS request for the domain
www.thepasswordisflapjack.maliciousdomain.com.

Attackers can also abuse the HTTP standard. Since the GET method
is intended for requests, it provides a limited amount of space for
data (typically around 2KB). Spyware regularly includes instructions
on what it wants to collect in the URI path or query of an HTTP GET,
rather than in the body of the message.

In an observed malware, all information from the infected host was
embedded in the User-Agent fields of multiple HTTP GET requests.

35

Hiding in Plain Sight: Attackers Mimic Existing Protocols

GET /world.html HTTP/1.1
User-Agent: %^&NQvtmw3eVhTfEBnzVw/aniIqQB6qQgTvmxJzVhjqJMjcHtEhI97n9+yy+duq+h3
b0RFzThrfE9AkK9OYIt6bIM7JUQJdViJaTx+q+h3dm8jJ8qfG+ezm/C3tnQgvVx/eECBZT87NTR/fU
QkxmgcGLq
Cache-Control: no-cache

GET /world.html HTTP/1.1
User-Agent: %^&EBTaVDPYTM7zVs7umwvhTM79ECrrmd7ZVd7XSQFvV8jJ8s7QVhcgVQOqOhPdUQB
XEAkgVQFvms7zmd6bJtSfHNSdJNEJ8qfGEA/zmwPtnC3d0M7aTs79KvcAVhJgVQPZnDIqSQkuEBJvn
D/zVwneRAyJ8qfGIN6aIt6aIt6cI86qI9mlIe+q+OfqE86qLA/FOtjqE86qE86qE86qHqfGIN6aIt6
aIt6cI86qI9mlIe+q+OfqE86qLA/FOtjqE86qE86qE86qHsjJ8tAbHeEbHeEbIN6qE96jKt6kEABJE
86qE9cAMPE4E86qE86qE86qEA/vmhYfVi6J8t6dHe6cHeEbI9uqE96jKtEkEABJE86qE9cAMPE4E86
qE86qE86qEATrnw3dUR/vmbfGIN6aINAaIt6cI86qI9ulJNmq+OfqE86qLA/FOtjqE86qE86qE86qN
Ruq/C3tnQgvVx/e9+ybIM2eIM2dI96kE86cINygK87+NM6qE862/AvMLs6qE86qE86qE87NnCBdn87
JTQkg9+yqE86qE86qE86qE86qE86bEATzVCOymduqE86qE86qE86qE86qE96qSxvfTRIJ8s6qE86qE
86qE86qE86qE9Sq/CvdGDIzE86qK8bgIeEXItObH9SdJ87s0R/vmd7wmwPv9+yJ8uIlRA/aSiPYTQk
fmd7rVw+qOhPfnCvZTiJmMtj
Cache-Control: no-cache

Attackers tunnel communications by misusing fields in a protocol to
avoid detection. If defenders search the contents of the body of the
HTTP session in our sample, for example, they won’t see any traffic.

36

Hiding in Plain Sight: Attackers Mimic Existing Protocols

E.g.: Evolution of User-Agent field in malware mimicking a browser:

▷ First generation used completely manufactured strings.

▷ Next generation used a common value in real network traffic, e.g.:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

While that made them blend in better, network defenders could
still use a static User-Agent field to create effective signatures.

▷ Next, malware would switch between multiple values, all
commonly used by normal traffic.

▷ The latest technique uses a native library call that constructs
requests with the same code that the browser uses, so that its
User-Agent string is indistinguishable from the browser’s.

37

Hiding in Plain Sight: Attackers Use Existing Infrastructure

Using Existing Infrastructure:

The attacker may use a server that has many purposes.

The legitimate uses will obscure the malicious uses, since
investigation of the IP address will also reveal the legitimate uses.

A more sophisticated approach is to embed commands for the
malware in a legitimate web page. For example:

<!DOCTYPE html PUBLIC "[...]"> [...]
<head> [...]
<title> Roaring Capital | [...]</title>
[...]
<!-- adsrv?bG9uZ3NsZWVw -->
<!--<script type="text/javascript" src="/js/dotastic.custom.js"></script>-->
[...]

There is indeed an encoded command for malware (in a comment):
bG9uZ3NsZWVw is Base64 encoding of longsleep.

38

Hiding in Plain Sight: Leveraging Client-Initiated Beaconing

Leveraging Client-Initiated Beaconing:

One trend in network design is the increased use of Network Address
Translation (NAT) and proxy solutions.

Attackers waiting for requests from malware have difficulty
identifying which (infected) host is communicating, as all requests
look like they are coming from the proxy IP address.

One common malware technique is to construct a profile of the victim
machine and pass that unique identifier in its beacon.

A defender having found how the malware identifies distinct hosts
can use that information to identify and track infected machines.

39

Understanding Surrounding Code

Suppose we have suspected the following request in our traffic logs:

GET /1011961917758115116101584810210210256565356 HTTP/1.1
Accept: * / *
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.badsite.com
Connection: Keep-Alive
Cache-Control: no-cache

Running the malware in our lab environment (or sandbox), we notice
the following similar request:

GET /14586205865810997108584848485355525551 HTTP/1.1
Accept: * / *
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.badsite.com
Connection: Keep-Alive
Cache-Control: no-cache

40

Understanding Surrounding Code

Using Internet Explorer, we find that the User-Agent on this system is:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;
.NET CLR 2.0.50727; .NET CLR 3.0.04506.648)

Given the different User-Agent strings, it appears that this malware’s
User-Agent is hard-coded, but a common one (risk of false positives).

The next step is to perform dynamic analysis by running the malware
a couple of times. The GET requests were the same except the URIs:

/1011961917758115116101584810210210256565356 (actual traffic)
/14586205865810997108584848485355525551
/7911554172581099710858484848535654100102
/2332511561845810997108584848485357985255

There appears to be some common characters in the middle (5848).

41

Finding the Networking Code

Next, static analysis can be used to figure out exactly how the
request is being created. The first step is to find the system calls that
performs the communication.

An overview of the Windows API calls to implement networking functionality.

WinSock API WinINet API COM interface

WSAStartup InternetOpen URLDownloadToFile
getaddrinfo InternetConnect CoInitialize
socket InternetOpenURL CoCreateInstance
connect InternetReadFile Navigate
send InternetWriteFile
recv HTTPOpenRequest
WSAGetLastError HTTPQueryInfo

HTTPSendRequest

42

Finding the Networking Code

In our sample malware, suppose our static analysis shows that its
imported functions include InternetOpen and HTTPOpenRequest,
suggesting that the malware uses the WinINet API.

When we investigate the parameters to InternetOpen, we see that
the User-Agent string is hard-coded in the malware.

Additionally, HTTPOpenRequest takes a parameter that specifies the
accepted file types, which we see also hard-coded.

Another HTTPOpenRequest parameter is the URI path, and we see
that the contents of the URI are generated from calls to
GetTickCount, Random, and gethostbyname.

43

Knowing the Sources of Network Content

Creating an effective signature requires knowledge of the origin of
network content. The following are the fundamental sources:

▷ Random data, e.g., from a call to a pseudo-random function.
▷ Data from standard networking libraries, e.g., the GET created
from a call to HTTPSendRequest.

▷ Hard-coded data, e.g. a hard-coded User-Agent string.
▷ Data about the host and its configuration, e.g., the hostname, the
current time according to the system clock, the CPU speed.

▷ Data received from other sources, such as a remote server or the
file system, e.g. a nonce sent from server for use in encryption, a
local file, keystrokes captured by a keystroke logger.

Note that there can be various levels of encoding imposed on this
data prior to its use in networking, but its fundamental origin
determines its usefulness for signature generation.

44

Hard-Coded Data vs. Ephemeral Data

Malware that uses lower-level networking APIs such as Winsock
requires more manually generated content to mimic common traffic
than malware that uses a higher-level networking API like the COM
interface.

More manual content means more hard-coded data, which increases
the likelihood that the malware author will have made some mistake
that you can use to generate a signature.

The mistakes can be obvious, such as the misspelling of Mozilla
(Mozila), or more subtle, such as missing spaces or a different use of
case than is seen in typical traffic (MoZilla).

In our sample malware, a mistake exists in the hard-coded Accept
string: it is statically defined as * / * instead of the usual */*.

45

Hard-Coded Data vs. Ephemeral Data

Recall that the URI from our example has the following form:

/14586205865810997108584848485355525551

The URI generation function calls GetTickCount, Random, and
gethostbyname, and when concatenating strings, the malware uses
the colon : character. The hard-coded Accept string and the
hard-coded colons are good candidates for inclusion in the signature.

Suppose that our debugging shows that the function creates a string
with the following format (before being sent to an encoding function):

<4 random bytes>:<first three bytes of hostname>:
<time from GetTickCount as a hexadecimal number>

The encoding seems to take each byte and convert it to its ASCII
decimal form (for example, the character a becomes 97).

46

Identifying and Leveraging the Encoding Steps

The GetTickCount results are hidden by two layers of encoding,
first turning the binary DWORD value into an 8-byte hex representation,
and then translating each of those bytes into its decimal ASCII value.

The final regular expression is as follows:

/\/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|11[012]){8}/

<4 random bytes> : <first 3 bytes of host-
name>

: <time from GetTick-
Count>

0x91, 0x56, 0xCD, 0x56 : ”m”, ”a”, ”l” : 00057473
0x91, 0x56, 0xCD, 0x56 0x3A 0x6D, 0x61, 0x6C 0x3A 0x30, 0x30, 0x30, 0x35,

0x37, 0x34, 0x37, 0x33
1458620586 58 10997108 58 4848485355525551
(([1-9]|1[0-9]|2[0-
5])0,1[0-9])4

58 [0-9]6,9 58 (4[89]|5[0-
7]|9[789]|10[012])8

47

Creating a Signature

The following is the proposed Snort signature for our sample
malware: a static User-Agent string, an unusual Accept string, an
encoded colon (58) in the URI, a missing referrer, and a GET request
matching the regular expression described previously.

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"TROJAN Malicious Beacon ";
content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)";
content:"Accept: * / *"; uricontent:"58";
content:!"|0d0a|referer:"; nocase; pcre:"/GET
\/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10[012]){8}
HTTP/"; classtype:trojan-activity; sid:2000002; rev:1;)

Note: Our focus was on creating a signature that works. Optimizing a
signatures to ensure good performance is also important.

48

Analyze the Parsing Routines

So far, we have discussed how to analyze the traffic that the malware
generates, but information in the malware about the traffic that it
receives can also be used to generate a signature.

As an example, recall this scenario: a malware makes a request for a
web page at a site the attacker has compromised and search for the
hidden message embedded (as an HTML comment) in the web page.

49

Analyze the Parsing Routines

When comparing the strings in the malware and the web page, we see
that there is a common term in both: adsrv?. The web page that is
returned has a single line that looks like this:

<!-- adsrv?bG9uZ3NsZWVw -->

It might be tempting to create a network signature based on the
observed traffic, but doing so would result in an incomplete solution.
First, two questions must be answered:

▷ What other commands might the malware understand?

▷ How does it identify that the web page contains a command?

We first look for the networking routine where the page is received
and passed to the parsing function.

50

Analyze the Parsing Routines

The IDA Pro graph of a sample parsing function 51

Analyze the Parsing Routines

The design is typical of a custom parsing function, which is often
used in malware instead of something like a regular expression
library. Custom parsing routines are generally organized as a
cascading pattern of tests for the initial characters.

This sample function has a double cascade and loop structure:

- the first loop checks for the <!-- characters

- and the second looks for --> characters

In the block between the cascades, there is a function call that tests
the contents that come after the <!--. Thus, the command will be
processed only if the contents in the middle match the internal
function and both sides of the comment enclosure are intact.

52

Analyze the Parsing Routines

Digging deeper into the parsing function, we find that it first checks
that the adsrv? string is present.

The attacker places a command for the malware between the
question mark and the comment closure, and performs a Base64
conversion of the command to provide rudimentary obfuscation.

The parsing function does the Base64 conversion, but it does not
interpret the resulting command. The command analysis is
performed later on in the code once parsing is complete.

Sample Malware Commands

Command example Base64 translation

longsleep bG9uZ3NsZWVw
superlongsleep c3VwZXJsb25nc2xlZXA=
shortsleep c2hvcnRzbGVlcA==
run:www.example.com/fast.exe cnVuOnd3dy5leGFtcGxlLmNvbS9mYXN0LmV4ZQ==
connect:www.example.com:80 Y29ubmVjdDp3d3cuZXhhbXBsZS5jb206ODA=

53

Analyze the Parsing Routines

One approach to creating signatures for this backdoor is to target the
full set of commands known to be used by the malware (including the
surrounding context):

<!-- adsrv?bG9uZ3NsZWVw -->
<!-- adsrv?c3VwZXJsb25nc2xlZXA= -->
<!-- adsrv?c2hvcnRzbGVlcA== -->
<!-- adsrv?cnVu
<!-- adsrv?Y29ubmVj

The last two expressions target only the static part of the commands
(run and connect), and since the length of the argument is not
known, they do not target the trailing comment characters (-->).

Signatures that use all of these elements have a risk of being too
specific: If the attacker changes any part of the malware, it will cease
to be effective.

54

Targeting Multiple Elements

We saw that different parts of the command interpretation were in
different parts of the code. Given that knowledge, we can create
different signatures to target the various elements separately.

The three elements that appear to be in distinct functions are
comment bracketing, the fixed adsrv? with a Base64 expression
following, and the actual command parsing. Based on these three
elements, a set of signature elements could include the following:

pcre:"/<!-- adsrv\?([a-zA-Z0-9+\/=]{4})+ -->/"
content:"<!-- "; content:"bG9uZ3NsZWVw -->"; within:100;
content:"<!-- "; content:"c3VwZXJsb25nc2xlZXA= -->"; within:100;
content:"<!-- "; content:"c2hvcnRzbGVlcA== -->"; within:100;
content:"<!-- "; content:"cnVu";within:100;content: "-->"; within:100;
content:"<!-- "; content:"Y29ubmVj"; within:100; content:"-->"; within:100;

55

Targeting Multiple Elements

The first signature targets the command prefix adsrv? followed by a
generic Base64-encoded command. The rest of the signatures target
a known Base64-encoded command without any dependency on a
command prefix.

The parsing occurs in a separate section of the code, so it makes
sense to target it independently. If the attacker changes one part of
the code, our signatures will still detect the unchanged part.

Note that we are still making assumptions: that the attacker will most
likely continue to use comment bracketing, since comment
bracketing is a part of regular web communications and is unlikely to
be considered suspicious. Nevertheless, this strategy provides more
robust coverage than our initial attempt and is more likely to detect
future variants of the malware.

56

Targeting Multiple Elements

Let’s revisit the signature we created earlier for beacon traffic. Recall
that we combined every possible element into the same signature:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"TROJAN Malicious Beacon ";
content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)";
content:"Accept: * / *"; uricontent:"58"; content:!"|0d0a|referer:"; nocase;
pcre:"/GET
\/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10 [012]){8} HTTP/";
classtype:trojan-activity; sid:2000002; rev:1;)

This signature has a limited scope and would become useless if the
attacker made any changes to the malware. A way to address
different elements individually and avoid rapid obsolescence is with
these two targets:

▷ Target 1: User-Agent string, Accept string, no referrer
▷ Target 2: Specific URI, no referrer

57

Targeting Multiple Elements

This strategy would yield two signatures:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"TROJAN Malicious Beacon UA with Accept Anomaly";
content:"User-Agent: Mozilla/4.0 (compatible\; MSIE 7.0\; Windows NT 5.1)";
content:"Accept: * / *"; content:!"|0d0a|referer:"; nocase;
classtype:trojan-activity; sid:2000004; rev:1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"TROJAN Malicious Beacon URI";
uricontent:"58"; content:!"|0d0a|referer:"; nocase; pcre:"/GET
\/([12]{0,1}[0-9]{1,2}){4}58[0-9]{6,9}58(4[89]|5[0-7]|9[789]|10[012]){8} HTTP/";
classtype:trojan-activity; sid:2000005; rev:1;)

58

Understanding the Attacker’s
Perspective

Network Countermeasures

Safely Investigate an Attacker Online

Content-Based Network Countermeasures

Combining Dynamic and Static Analysis Techniques

Understanding the Attacker’s Perspective

59

Understanding the Attacker’s Perspective

Attackers too struggle to update software, to remain current and
compatible with changing systems! Any necessary changes should
be minimal, as large changes threaten the integrity of their systems.

So, using multiple signatures targeting different parts of the malicious
code makes detection more resilient to attacker modifications.

Here are additional rules of thumb to exploit attacker weaknesses:

▷ Focus on the protocol elements that are part of both endpoints.
Changing either the client or the server code alone is easier than
changing both.

▷ Focus on any elements of the protocol known to be part of a key.
▷ Identify elements of the protocol that are not immediately
apparent in traffic. To avoid getting obsolete by the attacker’s
response to another defender, try to identify aspects that other
defenders might not have focused on.

60

Next: Anti-Disassembly

60

	Network Countermeasures
	Safely Investigate an Attacker Online
	Content-Based Network Countermeasures
	Combining Dynamic and Static Analysis Techniques
	Understanding the Attacker's Perspective

