
Anti-Disassembly
CYBR473 – Malware and Reverse Engineering (2024/T1)

Lecturers: Arman Khouzani, Alvin Valera

Victoria University of Wellington – School of Engineering and Computer Science



Table of contents

1. Understanding Anti-Disassembly

2. Defeating Disassembly Algorithms

Linear Disassembly

Flow-Oriented Disassembly

3. Anti-Disassembly Techniques

4. Obscuring Flow Control

5. Thwarting Stack-Frame Analysis

1



Reading Material

▶ Part V: Anti-Reverse-Engineering

▷ Ch.16: Anti-Disassembly

“Practical Malware Analysis: The
Hands-on Guide to Dissecting
Malicious Software”, Michael Sikorski
and Andrew Honig, 2012

2



Anti-Disassembly

Anti-disassembly uses specially crafted code or data to cause
disassembly analysis tools to produce an incorrect program listing.

This technique is crafted by malware authors manually, with a
separate tool in the build and deployment process or interwoven into
their malware’s source code.

Any code that executes successfully can be reverse-engineered, but
anti-disassembly and anti-debugging techniques increase the time
and level of skill required of the malware analyst.

Anti-disassembly is also effective at preventing certain automated
analysis: Any process that uses individual instructions (e.g.
instruction-based similarity measures) will be susceptible.

3



Understanding Anti-Disassembly

Understanding Anti-Disassembly

Defeating Disassembly Algorithms

Anti-Disassembly Techniques

Obscuring Flow Control

Thwarting Stack-Frame Analysis

4



Understanding Anti-Disassembly

Anti-disassembly work by taking advantage of the assumptions and
limitations of disassemblers. E.g., they can only represent each byte
of a program as part of one instruction at a time. If tricked into
disassembling at a wrong offset, a valid instruction could be hidden:

jmp short near ptr loc_2+1
; ---------------------------------------
loc_2: ; CODE XREF: seg000:00000000j

call near ptr 15FF2A71h
or [ecx], dl
inc eax

; ---------------------------------------
db 0

The target of the jmp is invalid because it falls in the middle of the
next instruction. The target of the call is nonsensical.

5



Understanding Anti-Disassembly

jmp short loc_3
; ---------------------------------------

db 0E8h
; ---------------------------------------
loc_3: ; CODE XREF: seg000:00000000j

push 2Ah
call Sleep

The target of the first jmp instruction is now properly represented, it
jumps to a push instruction followed by the call to Sleep.

The byte on the third line of this example is 0xE8, but this byte is not
executed by the program because the jmp instruction skips over it.

6



Defeating Disassembly
Algorithms

Understanding Anti-Disassembly

Defeating Disassembly Algorithms

Anti-Disassembly Techniques

Obscuring Flow Control

Thwarting Stack-Frame Analysis

7



Defeating Disassembly Algorithms

There are two types of disassembler algorithms:

- Linear

- Flow-Oriented

The linear-disassembly strategy iterates over a block of code,
disassembling one instruction at a time linearly, without deviating.

Linear disassembly uses the size of the disassembled instruction to
determine which byte to disassemble next.

The main drawback to this method is that it will disassemble too
much code: it keeps blindly disassembling, even if flow-control
instructions will cause only a small portion to execute.

8



Linear Disassembly

char buffer[BUF_SIZE];
int position = 0;

while (position < BUF_SIZE) {
x86_insn_t insn;
int size = x86_disasm(buf, BUF_SIZE, 0, position, &insn);

if (size != 0) {
char disassembly_line[1024];
x86_format_insn(&insn, disassembly_line, 1024, intel_syntax);
printf("%s\n", disassembly_line);
position += size;

} else {
/* invalid/unrecognized instruction */

position++;
}

}
x86_cleanup();

9



Defeating Disassembly Algorithms: Linear Disassembly

A problem with linear disassembly is that the code section of nearly
all binaries also contains data that isn’t instructions.
For instance, one of the most common types of data items found in a
code section, is a pointer value used in a table-driven switch idiom:

jmp ds:off_401050[eax*4]; switch jump

; switch cases omitted ...

xor eax, eax
pop esi
retn

; ---------------------------------------
off_401050 dd offset loc_401020 ; DATA XREF: _main+19r

dd offset loc_401027 ; jump table for switch stmnt
dd offset loc_40102E
dd offset loc_401035

10



Defeating Disassembly Algorithms: Linear Disassembly

These four pointer values shown in the code fragment make up 16
bytes of data inside the .text section of this binary.

They also happen to disassemble to valid instructions, if produced by
a linear-disassembly algorithm when it continues disassembling
instructions beyond the end of the function:

and [eax],dl
inc eax
add [edi],ah
adc [eax+0x0],al
adc cs:[eax+0x0],al
xor eax,0x4010

11



Defeating Disassembly Algorithms: Linear Disassembly

The key way that malware authors exploit linear-disassembly
algorithms lies in planting data bytes that form the opcodes of
multibyte instructions.

For example, the standard local call instruction is 5 bytes, beginning
with the opcode 0xE8. If the 16 bytes of data that compose the
switch table end with the value 0xE8, the disassembler would
encounter the call instruction opcode and treat the next 4 bytes as
an operand to that instruction, instead of the beginning of the next
function.

Linear-disassembly algorithms are the easiest to defeat because they
are unable to distinguish between code and data.

12



Flow-Oriented Disassembly

A more reliable algorithm, used by most commercial disassemblers
like IDA Pro, is the flow-oriented disassembly.

The key difference is that it doesn’t blindly iterate over a buffer.
Instead, it builds a list of locations to disassemble.

E.g., this can be disassembled only with a flow-oriented disassembler:

test eax, eax
jz short loc_1A
push Failed_string
call printf
jmp short loc_1D

; --------------------------------------
Failed_string: db 'Failed',0
; --------------------------------------
loc_1A: xor eax, eax
loc_1D: retn

13



Flow-Oriented Disassembly

This example begins with a test and a conditional jump.

When the flow-oriented disassembler reaches the conditional branch
instruction jz, it notes that at some point in the future it needs to
disassemble the location loc_1A.

Because this is only a conditional branch, the following instruction is
also a possibility in execution, so it will be disassembled as well.

The next two lines are responsible for printing the string Failed.

Following this is a jmp instruction. The flow-oriented disassembler
will add the target of this, loc_1D, to the list of places to
disassemble in the future.

Since jmp is unconditional, the disassembler will not automatically
disassemble the instruction immediately following in memory.
Instead, it will step back and check the list of places it noted
previously, such as loc_1A, and disassemble starting from that point.

14



Flow-Oriented Disassembly

In contrast, when a linear disassembler encounters the jmp
instruction, it will continue blindly disassembling instructions
sequentially in memory, as it has no choice to make about which
instructions to disassemble at a given time:

test eax, eax
jz short near ptr loc_15+5
push Failed_string
call printf
jmp short loc_15+9

Failed_string:
inc esi
popa

loc_15:
imul ebp, [ebp+64h], 0C3C03100h

15



Flow-Oriented Disassembly

Conditional branches give the flow-oriented disassembler a choice of
two places to disassemble: the true or the false branch.

In typical compiler-generated code, there would be no difference in
output if the disassembler processes the true or false branch first.

In handwritten assembly code and anti-disassembly code, however,
the two branches can often produce different disassembly for the
same block of code.

When there is a conflict, most disassemblers trust their initial
interpretation of a given location first.

Most flow-oriented disassemblers will process (and thus trust) the
false branch of any conditional jump first.

16



Defeating Disassembly Algorithms: Flow-Oriented Disassembly

A sequence of bytes and their corresponding machine instructions. When the
program executes, the hello string is skipped by the call instruction, and
its 6 bytes and NULL terminator are never executed as instructions.

The call instruction is another place where the disassembler must
make a decision. The location being called is added to the future
disassembly list, along with the location immediately after the call.

Just as with the conditional jump, most disassemblers disassemble
the bytes after the call first and the called location later.

17



Defeating Disassembly Algorithms: Flow-Oriented Disassembly

In handwritten assembly, programmers often use call to get a
pointer to a fixed piece of data instead of actually calling a subroutine.

In this example, the call instruction is used to create a pointer for
the string hello on the stack. The pop instruction following the call
then takes this value off the top of the stack and puts it into a register.

But disassembling this binary with IDA Pro, produces wrong results:

E8 06 00 00 00 call near ptr loc_4011CA+1
68 65 6C 6C 6F push 6F6C6C65h

loc_4011CA:
00 58 C3 add [eax-3Dh], bl

18



Defeating Disassembly Algorithms: Flow-Oriented Disassembly

“h”, the first letter of the string hello, is 0x68. As it turns out, this is
also the opcode of the 5-byte instruction push DWORD.

The null terminator for the hello string turned out to also be the
first byte of another legitimate instruction.

The flow-oriented disassembler in IDA Pro decided to process the
bytes immediately following the call before processing the target of
the call, and thus produced these two erroneous instructions.

Had it processed the target first, it still would have produced the first
push, but the instruction following it would have conflicted with the
real instructions it disassembled as a result of the call target.

19



Defeating Disassembly Algorithms: Flow-Oriented Disassembly

If IDA Pro produces inaccurate results, you can manually switch bytes
from data to instructions or instructions to data by using the C or D
keys on the keyboard, as follows:

▷ Pressing the C key turns the cursor location into code.

▷ Pressing the D key turns the cursor location into data.

Here is the same function after manual cleanup:

E8 06 00 00 00 call loc_4011CB
68 65 6C 6C 6F 00 aHello db 'hello',0

loc_4011CB:
58 pop eax
C3 retn

20



Anti-Disassembly Techniques

Understanding Anti-Disassembly

Defeating Disassembly Algorithms

Anti-Disassembly Techniques

Obscuring Flow Control

Thwarting Stack-Frame Analysis

21



Anti-Disassembly Techniques: Jumps with the Same Target

A common anti-disassembly technique is two back-to-back
conditional jump instructions that both point to the same target.

For example, a jz loc_A followed by jnz loc_A is, in effect, an
unconditional jmp, but the disassembler continues disassembling the
false branch of jnz even though it will never be reached:

74 03 jz short near ptr loc_4011C4+1
75 01 jnz short near ptr loc_4011C4+1

loc_4011C4: ; CODE XREF: sub_4011C0
; sub_4011C0+2j

E8 58 C3 90 90 call near ptr 90D0D521h

In this example, the instruction immediately following the two
conditional jumps appears to be a call instruction, beginning with
the byte 0xE8. This is not the case, however, as both conditional
jump instructions actually point 1 byte beyond the 0xE8 byte.

22



Anti-Disassembly Techniques: Jumps with the Same Target

The following is disassembly of the same code, but this time fixed
with the D key, to turn the byte immediately following the jnz into
data, and the C key to turn the bytes at loc_4011C5 into instructions:

74 03 jz short near ptr loc_4011C5
75 01 jnz short near ptr loc_4011C5

; ------------------------
E8 db 0E8h

; ------------------------
loc_4011C5: ; CODE XREF: sub_4011C0

; sub_4011C0+2j
58 pop eax
C3 retn

Note: To display the raw bytes (on the left) in IDA Pro, under Options
▶ General, set the Number of Opcode Bytes option appropriately.

23



Anti-Disassembly Techniques: Jumps with the Same Target

A jz instruction followed by a jnz instruction.

24



Anti-Disassembly Techniques: Jump with a Constant Condition

Another anti-disassembly technique is a single conditional jump
instruction whose condition will always be the same:

33 C0 xor eax, eax
74 01 jz short near ptr loc_4011C4+1

loc_4011C4: ; CODE XREF: 004011C2j
; DATA XREF: .rdata:004020ACo

E9 58 C3 68 94 jmp near ptr 94A8D521h

Notice that xor eax, eax sets EAX to zero and, as a byproduct,
sets the zero flag. Hence, the next instruction is not conditional at all.

As discussed before, the disassembler processes the false branch
first, which will produce conflicting code with the true branch, and
since it processed the false branch first, it trusts that branch more.

25



Anti-Disassembly Techniques: Jump with a Constant Condition

After fixing the disassembly (using the D and C keyboard shortcuts):

33 C0 xor eax, eax
74 01 jz short near ptr loc_4011C5

; --------------------------
E9 db 0E9h

; --------------------------
loc_4011C5: ; CODE XREF: 004011C2j

; DATA XREF: .rdata:004020ACo
58 pop eax
C3 retn

26



Anti-Disassembly Techniques: Jump with a Constant Condition

Illustration of the example of a conditional jump with a constant condition.

27



Anti-Disassembly Techniques: Impossible Disassembly

So far, we examined code that was improperly disassembled first, but
with an interactive disassembler, accurate results could be achieved.

However, sometimes no traditional listing accurately represents the
executed instructions. The book calls them impossible disassembly.

The simple anti-disassembly techniques we have discussed use a
strategically placed “rogue” data byte, which can be ignored.

But what if a byte is part of multiple instructions that are executed?

Inward-pointing jmp instruction (this is effectively a complicated NOP – why?)
28



Anti-Disassembly Techniques: Impossible Disassembly

To solve this problem, a malware analyst could choose to replace this
entire sequence with NOP instructions using an IDC or IDAPython
script that calls the PatchByte function. Another alternative is to
simply turn it all into data with the D key, so that disassembly will
resume as expected at the end of the 4 bytes.

29



Anti-Disassembly Techniques: Impossible Disassembly

Let’s examine a more advanced specimen:

Multilevel inward-jumping sequence

The disassembler disassembles the instruction immediately
following jz, which begins with 0xE8, the opcode for a 5-byte call.

The disassembler can’t disassemble the target of the jz since these
bytes are already represented as part of the mov instruction.

30



Anti-Disassembly Techniques: Impossible Disassembly

When first viewed in IDA Pro, this sequence will look like the following:

66 B8 EB 05 mov ax, 5EBh
31 C0 xor eax, eax
74 FA jz short near ptr sub_4011C0+2

loc_4011C8:
E8 58 C3 90 90 call near ptr 98A8D525h

Since there is no way to clean up the code so that all executing
instructions are represented, we must choose the instructions to
leave in. Which one should it be?

After manipulating the code (with D and C keys in IDA Pro), the result
should look like the following:

31



Anti-Disassembly Techniques: Impossible Disassembly

66 byte_4011C0 db 66h
B8 db 0B8h
EB db 0EBh
05 db 5

; -------------------------
31 C0 xor eax, eax

; -------------------------
74 db 74h
FA db 0FAh
E8 db 0E8h

; -------------------------
58 pop eax
C3 retn

32



Anti-Disassembly Techniques: Impossible Disassembly

However, this solution may interfere with analysis processes such as
graphing. A more complete solution would be to use the PatchByte
function from the IDC scripting language to modify remaining bytes
so that they appear as NOP instructions:

def NopBytes(start, length):
for i in range(0, length):

PatchByte(start + i, 0x90)
MakeCode(start)

NopBytes(0x004011C0, 4)
NopBytes(0x004011C6, 3)

33



Anti-Disassembly Techniques: Impossible Disassembly

When this script is executed, the resulting disassembly is clean,
legible, and logically equivalent to the original:

90 nop
90 nop
90 nop
90 nop
31 C0 xor eax, eax
90 nop
90 nop
90 nop
58 pop eax
C3 retn

34



NOP-ing Out Instructions with IDA Pro

The following script establishes the hotkey ALT-N, allowing the
analysts to NOP-out instructions as they see fit at the cursor location:

import idaapi
idaapi.CompileLine('static n_key() {

RunPythonStatement("nopIt()"); }')
AddHotkey("Alt-N", "n_key")
def nopIt():

start = ScreenEA()
end = NextHead(start)
for ea in range(start, end):

PatchByte(ea, 0x90)
Jump(end)
Refresh()

35



Obscuring Flow Control

Understanding Anti-Disassembly

Defeating Disassembly Algorithms

Anti-Disassembly Techniques

Obscuring Flow Control

Thwarting Stack-Frame Analysis

36



Obscuring Flow Control: The Function Pointer Problem

Function pointers are a common programming idiom in the C
programming language and are used extensively behind the scenes in
C++. Despite this, they still prove to be problematic to a disassembler.

If function pointers are used in handwritten assembly or crafted in a
nonstandard way in source code, the results can be difficult to
reverse-engineer without dynamic analysis.

The following assembly listing shows two functions. The second
function uses the first through a function pointer.

37



Obscuring Flow Control: The Function Pointer Problem

004011C0 sub_4011C0 proc near ; DATA XREF: sub_4011D0+5o
004011C0
004011C0 arg_0 = dword ptr 8
004011C0
004011C0 push ebp
004011C1 mov ebp, esp
004011C3 mov eax, [ebp+arg_0]
004011C6 shl eax, 2
004011C9 pop ebp
004011CA retn
004011CA sub_4011C0 endp
004011D0 sub_4011D0 proc near ; CODE XREF: _main+19p
004011D0 ; sub_401040+8Bp
004011D0
004011D0 var_4 = dword ptr -4
004011D0 arg_0 = dword ptr 8
004011D0
004011D0 push ebp
004011D1 mov ebp, esp
...

38



Obscuring Flow Control: The Function Pointer Problem

...
004011D3 push ecx
004011D4 push esi
004011D5 mov [ebp+var_4], offset sub_4011C0
004011DC push 2Ah
004011DE call [ebp+var_4]
004011E1 add esp, 4
004011E4 mov esi, eax
004011E6 mov eax, [ebp+arg_0]
004011E9 push eax
004011EA call [ebp+var_4]
004011ED add esp, 4
004011F0 lea eax, [esi+eax+1]
004011F4 pop esi
004011F5 mov esp, ebp
004011F7 pop ebp
004011F8 retn
004011F8 sub_4011D0 endp

39



Obscuring Flow Control: The Function Pointer Problem

While this example isn’t particularly difficult to reverse-engineer, it
does expose one key issue. The function sub_4011C0 is actually
called from two different places within the sub_4011D0 function, but
it shows only one cross-reference.

This is because IDA Pro was able to detect the initial reference to the
function when its offset was loaded into a stack variable on line
004011D5. What it does not detect, however, is the fact that this
function is then called twice. Any function prototype information that
would normally be autopropagated to the calling function is also lost.

When used extensively and in combination with other
anti-disassembly techniques, function pointers can greatly compound
the complexity and difficulty of reverse-engineering.

40



Adding Missing Code Cross-References in IDA Pro

All of the information not autopropagated, such as function argument
names, can be added manually as comments.

To add cross-references, we use the IDC language (or IDAPython),
specifically, the AddCodeXref function. It takes three arguments:

- the location the reference is from;
- the location the reference is to;
- and a flow type.

The most useful flow types are either fl_CF for a normal call
instruction or a fl_JF for a jump instruction.

To fix the previous example, the following script can be executed:

AddCodeXref(0x004011DE, 0x004011C0, fl_CF);
AddCodeXref(0x004011EA, 0x004011C0, fl_CF);

41



Obscuring Flow Control: Return Pointer Abuse

The call and jmp instructions are not the only instructions to
transfer control within a program (what is their difference?)

The counterpart to the call instruction is retn (also as ret).

As call is a combination of jmp and push, retn is a combination of
pop and jmp. A disassembly technique is based on using retn in
ways other than to return from a function call.

▷ A result of this technique is that the disassembler doesn’t show
any code cross-reference to the target being jumped to.

▷ Another effect of this technique is that the disassembler will
prematurely terminate the function.

42



Obscuring Flow Control: Return Pointer Abuse

004011C0 sub_4011C0 proc near ; CODE XREF: _main+19p
004011C0 ; sub_401040+8Bp
004011C0
004011C0 var_4 = byte ptr -4
004011C0
004011C0 call $+5
004011C5 add [esp+4+var_4], 5
004011C9 retn
004011C9 sub_4011C0 endp ; sp-analysis failed
004011C9
004011CA ; -----------------------------
004011CA push ebp
004011CB mov ebp, esp
004011CD mov eax, [ebp+8]
004011D0 imul eax, 2Ah
004011D3 mov esp, ebp
004011D5 pop ebp
004011D6 retn

43



Obscuring Flow Control: Return Pointer Abuse

This function simply takes a number and returns its product with 42.
Unfortunately, IDA Pro is unable to deduce any meaningful
information about it as it has been defeated by a rogue retn.

The first three instructions just jump to the real start of the function:

▶ call $+5: calls the location immediately following itself, which
results in a pointer to this location (004011C5) placed on the stack.
This is a common instruction found in self-referential or
position-independent code.

▶ add [esp+4+var_4], 5: you might think that this is referencing
a stack variable var_4, but notice that at the top of the function, var_4
is defined as the constant -4. This means that we are just adding 5 to
the value at the top of the stack, which will hence be 004011CA.

▶ retn: takes the value off the top of the stack and jumps to it. Here,
this is where the “real” function starts.

44



Obscuring Flow Control: Return Pointer Abuse

To repair this example, we could patch over the first three instructions
with NOP instructions and adjust the function boundaries to cover the
real function (e.g. with a script, as discussed before).

To adjust the function boundaries:

- place the cursor in IDA Pro inside the function you wish to adjust
and press ALT-P.

- Adjust the function end address to the memory address
immediately following the last instruction in the function.

45



Obscuring Flow Control: Misusing SEH

The Structured Exception Handling (SEH)mechanism provides a
method of flow control that can defeat disassemblers and debuggers.

SEH is a feature of the x86 architecture and is intended to provide a
way for the program to handle error conditions intelligently.

Exceptions can be triggered by e.g. access to an invalid memory
region or dividing by zero, or calling the RaiseException function.

The SEH chain is a list of functions designed to handle exceptions
within the thread.

- Each function either handles the exception or passes it to the
next handler in the list.

- If gets to the last handler, “an unhandled exception has occurred.”

Exceptions happen regularly, but are handled silently before they
crash the process.

46



Obscuring Flow Control: Misusing SEH

To find the SEH chain, the OS examines the FS segment register,
which contains a segment selector to access to the Thread
Environment Block (TEB).

The first structure within TEB is the Thread Information Block (TIB).

The first element of TIB is a pointer to the SEH chain, which is a linked
list of 8-byte structures called EXCEPTION_REGISTRATION records:

struct _EXCEPTION_REGISTRATION {
DWORD prev;
DWORD handler;

};

47



Obscuring Flow Control: Misusing SEH

This linked list operates conceptually as a stack. The first record to
be called is the last record to be added to the list.

The SEH chain grows and shrinks as layers of exception handlers in a
program change due to subroutine calls and nested exception handler
blocks. For this reason, SEH records are always built on the stack.

To achieve covert flow control using SEH, we do not need to concern
with how many exception records are currently in the chain; just how
to add our handler to the top of this list:

48



Obscuring Flow Control: Misusing SEH

To add a record to this list, we need to construct a new record on the
stack. Since the record structure is simply two DWORDs, we can do
this with two push instructions.

The stack grows upward, so the first push will be the pointer to the
handler function, and the second will be the pointer to the next record.

We are trying to add a record to the top of the chain, so the next record
in the chain when we finish will be what is currently the top, which is
pointed to by fs:[0]. The following code performs this sequence.

push ExceptionHandler
push fs:[0]
mov fs:[0], esp

49



Obscuring Flow Control: Misusing SEH

When our ExceptionHandler code is called, the stack will be
drastically altered. Luckily, we just need to return the stack to its
original position prior to the exception. Remember that our goal is to
obscure flow control and not to properly handle program exceptions.

The OS adds another SEH handler when our handler is called. To
return the program to normal operation, we need to unlink not just our
handler, but this handler as well. Therefore, we need to pull our
original stack pointer from esp+8 instead of esp.

mov esp, [esp+8]
mov eax, fs:[0]
mov eax, [eax]
mov eax, [eax]
mov fs:[0], eax
add esp, 8

50



Obscuring Flow Control: Misusing SEH

The following fragment covertly transfers the flow to a subroutine:

00401050 mov eax, (offset loc_40106B+1)
00401055 add eax, 14h
00401058 push eax
00401059 push large dword ptr fs:0 ; dwMilliseconds
00401060 mov large fs:0, esp
00401067 xor ecx, ecx
00401069 div ecx
0040106B
0040106B loc_40106B: ; DATA XREF: sub_401050o
0040106B call near ptr Sleep
00401070 retn
00401070 sub_401050 endp ; sp-analysis failed
00401070 ; ----------------------
00401071 align 10h
00401080 dd 824648Bh, 0A164h, 8B0000h, 0A364008Bh, 0
00401094 dd 6808C483h
00401098 dd offset aMysteryCode ; "Mystery Code"
0040109C dd 2DE8h, 4C48300h, 3 dup(0CCCCCCCCh)

51



Obscuring Flow Control: Misusing SEH

IDA Pro has not only missed that the subroutine at location 401080
was not called, but it also failed to even disassemble this function.

This code sets up an exception handler covertly by first setting EAX to
40106C, then adding 14h to build a pointer to the function 401080.

A divide-by-zero exception is then triggered.

Let’s use the C key at 401080 to see what was hidden using this trick:

00401080 mov esp, [esp+8]
00401084 mov eax, large fs:0
0040108A mov eax, [eax]
0040108C mov eax, [eax]
0040108E mov large fs:0, eax
00401094 add esp, 8
00401097 push offset aMysteryCode ; "Mystery Code"
0040109C call printf

52



Thwarting Stack-Frame Analysis

Understanding Anti-Disassembly

Defeating Disassembly Algorithms

Anti-Disassembly Techniques

Obscuring Flow Control

Thwarting Stack-Frame Analysis

53



Thwarting Stack-Frame Analysis

Disassemblers deduce the construction of a function’s stack frame,
allowing them to display its local variables and parameters.

This information is extremely valuable to a malware analyst, as it
allows for the analysis of a single function at one time.

However, analyzing a function to determine the construction of its
stack frame is not an exact science: it must make certain
assumptions and guesses that are reasonable but can usually be
exploited by a knowledgeable malware author.

Defeating stack-frame analysis also disrupts certain analytical
techniques, e.g. the Hex-Rays Decompiler plug-in for IDA Pro.

54



Thwarting Stack-Frame Analysis

00401543 sub_401543 proc near ; CODE XREF: sub_4012D0+3Cp
00401543 ; sub_401328+9Bp
00401543
00401543 arg_F4 = dword ptr 0F8h
00401543 arg_F8 = dword ptr 0FCh
00401543
00401543 000 sub esp, 8
00401546 008 sub esp, 4
00401549 00C cmp esp, 1000h
0040154F 00C jl short loc_401556
00401551 00C add esp, 4
00401554 008 jmp short loc_40155C
00401556 ; ---------------------------------------
00401556
00401556 loc_401556: ; CODE XREF: sub_401543+Cj
00401556 00C add esp, 104h
0040155C
...

55



Thwarting Stack-Frame Analysis

...
0040155C loc_40155C: ; CODE XREF: sub_401543+11j
0040155C -F8 mov [esp-0F8h+arg_F8], 1E61h
00401564 -F8 lea eax, [esp-0F8h+arg_F8]
00401568 -F8 mov [esp-0F8h+arg_F4], eax
0040156B -F8 mov edx, [esp-0F8h+arg_F4]
0040156E -F8 mov eax, [esp-0F8h+arg_F8]
00401572 -F8 inc eax
00401573 -F8 mov [edx], eax
00401575 -F8 mov eax, [esp-0F8h+arg_F4]
00401578 -F8 mov eax, [eax]
0040157A -F8 add esp, 8
0040157D -100 retn
0040157D sub_401543 endp ; sp-analysis failed

56



Thwarting Stack-Frame Analysis

The column on the far left is the standard IDA Pro line prefix, which
contains the segment name and memory address for each function.

The next column to the right displays the stack pointer. For each
instruction, the stack pointer column shows the value of the ESP
register relative to where it was at the beginning of the function.

(This stack pointer column can be enabled in IDA Pro through the
Optionsmenu.)

This view shows that this function is an ESP-based stack frame rather
than an EBP-based one, like most functions.

At 0040155C, the stack pointer begins to be shown as a negative
number. This should never happen for an ordinary function because it
means that this function damages the calling function’s stack frame.

In this listing, IDA Pro is also telling us that it thinks this function
takes 62 arguments, of which it thinks 2 are actually being used.

57



Thwarting Stack-Frame Analysis

This function doesn’t actually take 62 arguments. In reality, it takes no
arguments and has two local variables.

The code responsible for breaking IDA Pro’s analysis lies near the
beginning of the function, between locations 00401546 and
0040155C. It’s a simple comparison with two branches.

The ESP register is being compared against the value 0x1000. Each
branch adds some value to ESP: 0x104 on the “less-than” branch and
4 on the “greater-than-or-equal-to” branch.

From a disassembler’s perspective, there are two possible values of
the stack pointer offset at this point, depending on which branch has
been taken. The disassembler is forced to make a choice, and luckily
for the malware author, it is tricked into making the wrong choice.

58



Thwarting Stack-Frame Analysis

Earlier, we discussed conditional branches with constant conditions.

Here, too, cmp esp, 1000h will always produce a fixed result: the
lowest memory page in a Windows process would not be used as a
stack, and thus, this comparison is virtually guaranteed to always
result in the “greater-than-or-equal-to” branch.

The disassembly program doesn’t have this level of intuition: It’s not
designed to evaluate every decision in the code against a set of
real-world scenarios.

The crux of the problem is that the disassembler assumed that the
add esp, 104h instruction was valid and relevant, and adjusted its
interpretation of the stack accordingly.

In IDA Pro to make adjustment to the stack pointer, you can press
ALT-K on a particular line. In many cases, such as this example, it is
more fruitful to patch the stack-frame manipulation instructions.

59



Next: Anti-Debugging

59


	Understanding Anti-Disassembly
	Defeating Disassembly Algorithms
	Linear Disassembly
	Flow-Oriented Disassembly

	Anti-Disassembly Techniques
	Obscuring Flow Control
	Thwarting Stack-Frame Analysis

