
Covert Malware Launching
CYBR473 – Malware and Reverse Engineering (2024/T1)

Lecturers: Arman Khouzani, Alvin Valera

Victoria University of Wellington – School of Engineering and Computer Science



Table of contents

1. Launcher

2. Process Injection

3. Process Hollowing

4. Hook Injection

5. Detours

6. APC Injection

1



Reading Material

▶ Part IV: Malware Functionality

▷ Ch.12: Covert Malware
Launching

“Practical Malware Analysis: The
Hands-on Guide to Dissecting
Malicious Software”, Michael
Sikorski and Andrew Honig, 2012

2



Objectives

A malware analyst must be able to recognise launching techniques in
order to know how to find malware on a live system

▷ Describe common techniques for adding malicious functionality
to programs

▷ Recognise how this allows malware to hide itself

3



Launcher

Launcher

Process Injection

Process Hollowing

Hook Injection

Detours

APC Injection

4



Launcher

Launcher (a.k.a Loader) is a type of malware that sets itself or
another piece of malware for immediate or future
covert execution

Launchers often contain the malware that they’re designed to load.

▷ The most common example is an executable or DLL (the real
payload) embedded in its own resource section (.rsrc).

- Examples of the normal contents of the resource section include
icons, images, menus, and strings

▷ If the resource section is compressed or encrypted, the malware
must perform resource section extraction before loading.

▷ This often means that the launcher uses resource-manipulation
API functions such as FindResource, LoadResource, and
SizeofResource.

5



Launcher

HRSRC FindResourceA(
[in, optional] HMODULE hModule,
[in] LPCSTR lpName,
[in] LPCSTR lpType

);

Determines the location of a resource with the specified type & name
in the specified “module” (Windows term for an executable or DLL).

Parameters:

- [in, optional] hModule
A handle to the module whose executable file contains the
resource. If NULL, the module used to create the current process.

- [in] lpName
The name of the resource (as a LPCSTR, or an integer identifier).

- [in] lpType
The resource type (as a LPCSTR, or an integer identifier). 6



Launcher

HGLOBAL LoadResource(
[in, optional] HMODULE hModule,
[in] HRSRC hResInfo

);

Retrieves a handle that can be used to obtain a pointer to the first
byte of the specified resource in memory.

Parameters:

- [in, optional] hModule
handle to the module whose executable file contains the
resource. Default is the module that created the current process.

- [in] hResInfo
handle to the resource to be loaded, returned by FindResource.

7



Launcher

DWORD SizeofResource(
[in, optional] HMODULE hModule,
[in] HRSRC hResInfo

);

Retrieves the size, in bytes, of the specified resource.

Parameters:

- [in, optional] hModule
handle to the module whose executable file contains the
resource. Default is the module that created the current process.

- [in] hResInfo
handle to the resource to be loaded, returned by FindResource.

8



Launcher

Note: Malware launchers often must be run with administrator
privileges or escalate themselves to have those privileges.

Average user processes can’t perform all of the techniques that we
will introduce in this lecture.

- We discussed privilege escalation previously (the “Malware
behaviour” topic).

The fact that launchers may contain privilege-escalation code
provides another way to identify them.

9



Process Injection

Launcher

Process Injection

Process Hollowing

Hook Injection

Detours

APC Injection

10



Process Injection

Process Injection: inject code into another running process, and that
process unwittingly executes the malicious code.

- to conceal the malicious behaviour of their code
- to bypass host-based firewalls or process-specific security

Commonly used Windows API calls used in process injection:

▷ VirtualAllocEx: allocate space in an external process’s
memory

▷ WriteProcessMemory: write data to that allocated space.

Essential to these loading techniques that we will discuss:

▶ DLL Injection
▶ Process Replacement
▶ Hook Replacement

11



Process Injection

LPVOID VirtualAllocEx(
[in] HANDLE hProcess,
[in, optional] LPVOID lpAddress,
[in] SIZE_T dwSize,
[in] DWORD flAllocationType,
[in] DWORD flProtect

);

Reserves, commits, or changes (determined by
flAllocationType) the state of a region of memory within the
virtual address space of a process (specified by hProcess, which
must have the PROCESS_VM_OPERATION access right.).

If the function succeeds, the return value is the base address of the
allocated region of pages. If it fails, returns NULL.

12



Process Injection

BOOL WriteProcessMemory(
[in] HANDLE hProcess,
[in] LPVOID lpBaseAddress,
[in] LPCVOID lpBuffer,
[in] SIZE_T nSize,
[out] SIZE_T *lpNumberOfBytesWritten

);

Writes data to an area of memory in a process (specified by
hProcess, which must have PROCESS_VM_WRITE and
PROCESS_VM_OPERATION access rights to the process).

The return value is nonzero if it succeeds and 0 if it fails. It fails if the
requested write crosses into an inaccessible area of the process.

13



DLL Injection

DLL Injection:

▶ a remote process is injected with a code containing calls to
LoadLibrary with a path to a malicious DLL on the disk.

▶ the OS then loads the DLL and automatically calls its DllMain
function, which has as much access to the system as the
process in which it is running (it is in the same security context).

▷ also everything the malicious DLL does will appear to originate
from the compromised process.

While DLL injection can have legitimate purposes, e.g. debugging,
monitoring or performance analysis, it is a common technique used
by malware to evade detection, escalate privileges, or steal data.

14



DLL Injection

The launcher gets to access the Internet via injecting into iexplore.exe.

15



DLL Injection

HMODULE LoadLibraryA(
[in] LPCSTR lpLibFileName

);

Loads the specified module into the address space of the calling
process. The module may cause other modules to be loaded.

Parameters:

- [in] lpLibFileName
The (full-path of the) file name of the (DLL) module

If the function succeeds, the return value is a handle to the module.

16



DLL Injection

For DLL injection, the launcher malware must first obtain a handle to
the victim process:

▶ Use the Windows API calls CreateToolhelp32Snapshot,
Process32First, and Process32Next to search the process
list for the injection target.

▶ Once the target process PID is found, use it to obtain the handle
via a call to OpenProcess

Then CreateRemoteThread is commonly used to create and
execute a thread in the target process, passed 3 main parameters:

▷ the process handle (hProcess) obtained with OpenProcess
▷ the starting point of the injected thread (lpStartAddress), e.g.
set to LoadLibrary

▷ an argument for that thread (lpParameter), e.g. name of the
malicious DLL.

17



DLL Injection

HANDLE CreateToolhelp32Snapshot(
[in] DWORD dwFlags,
[in] DWORD th32ProcessID

);

Takes a snapshot of the specified processes, as well as the heaps,
modules, and threads used by these processes.

If the function succeeds, it returns an open handle to the specified
snapshot. If it fails, returns INVALID_HANDLE_VALUE.

18



DLL Injection

BOOL Process32First(
[in] HANDLE hSnapshot,
[in, out] LPPROCESSENTRY32 lppe

);

Parameters:

- [in] hSnapshot
A handle to the snapshot returned from a previous call to the
CreateToolhelp32Snapshot function.

- [in, out] lppe
A pointer to a PROCESSENTRY32 structure. It contains process
information such as the name of the executable file, the process
identifier, and the process identifier of the parent process.

19



DLL Injection

typedef struct tagPROCESSENTRY32 {
DWORD dwSize;
DWORD cntUsage;
DWORD th32ProcessID;
ULONG_PTR th32DefaultHeapID;
DWORD th32ModuleID;
DWORD cntThreads;
DWORD th32ParentProcessID;
LONG pcPriClassBase;
DWORD dwFlags;
CHAR szExeFile[MAX_PATH];

} PROCESSENTRY32;

20



DLL Injection

BOOL Process32Next(
[in] HANDLE hSnapshot,
[out] LPPROCESSENTRY32 lppe

);

Retrieves information about the next process recorded in a system
snapshot.

Return Value:

- TRUE if the next entry of the process list has been copied to the
buffer or FALSE otherwise. The ERROR_NO_MORE_FILES error
value is returned by the GetLastError function if no processes
exist or the snapshot does not contain process information.

21



DLL Injection

HANDLE OpenProcess(
[in] DWORD dwDesiredAccess,
[in] BOOL bInheritHandle,
[in] DWORD dwProcessId

);

Opens an existing local process object.

Important Parameters:

- [in] dwDesiredAccess
The access to the process object. This access right is checked
against the security descriptor for the process.

- [in] dwProcessId
The identifier of the local process to be opened. If
SeDebugPrivilege is enabled, all rights will be granted.

If succeeds, returns an open handle to the process, otherwise, NULL.
22



DLL Injection

HANDLE CreateRemoteThread(
[in] HANDLE hProcess,
[in] LPSECURITY_ATTRIBUTES lpThreadAttributes,
[in] SIZE_T dwStackSize,
[in] LPTHREAD_START_ROUTINE lpStartAddress,
[in] LPVOID lpParameter,
[in] DWORD dwCreationFlags,
[out] LPDWORD lpThreadId

);

Creates a thread that runs in the virtual address space of another
process. The thread has access to all objects that the process opens.

If succeeds, returns a handle to the new thread, NULL if fails.

23



DLL Injection

Main Parameters:

[in] hProcess

A handle to the process in which the thread is to be created. The
handle must have the PROCESS_CREATE_THREAD,
PROCESS_QUERY_INFORMATION, PROCESS_VM_OPERATION,
PROCESS_VM_WRITE, and PROCESS_VM_READ access rights.

[in] lpStartAddress

A pointer to the application-defined function to be executed by the
thread and represents the starting address of the thread in the remote
process. The function must exist in the remote process.

[in] lpParameter

A pointer to a variable to be passed to the thread function.
24



DLL Injection

FARPROC GetProcAddress(
[in] HMODULE hModule,
[in] LPCSTR lpProcName

);

Retrieves the address of an exported function (also known as a
procedure) or variable from the specified dynamic-link library (DLL).

Parameters:

- [in] hModule
A handle to the DLL module that contains the function or
variable, e.g. returned by GetModuleHandle function.

- [in] lpProcName
The function or variable name, or the function’s ordinal value.

Returns address of the exported function or variable, or NULL if fails.

25



DLL Injection

Recall that for DLL injection, CreateRemoteThread is called with 3
main parameters:

▷ the process handle (hProcess) obtained with OpenProcess
▷ the starting point of the injected thread (lpStartAddress) set
to the LoadLibrary function, obtained via GetProcAddress.

▷ an argument for that thread (lpParameter), i.e., the name of
the malicious DLL.

This assumes that LoadLibrary function and the malicious library
name string exist within the victim process’s memory space.
LoadLibrary is in kernel32, which is always available. For the
latter, malware uses VirtualAllocEx and WriteProcessMemory:

▷ VirtualAllocEx to allocate space in the target process if a
handle to that process is provided.

▷ WriteProcessMemory to write the malicious library name
string into that allocated memory space.

26



DLL Injection

C Pseudocode for performing DLL injection:

hVictimProcess = OpenProcess(PROCESS_ALL_ACCESS, 0, victimProcessID);
remoteBuffer = VirtualAllocEx(hVictimProcess, NULL, sizeof malicdllPath,

MEM_COMMIT, PAGE_READWRITE);
WriteProcessMemory(hVictimProcess, remoteBuffer, (LPVOID)malicdllPath,

sizeof malicdllPath, NULL);
threatStartRoutineAddress =

GetProcAddress(GetModuleHandle(TEXT("Kernel32")), "LoadLibraryW");

CreateRemoteThread(hVictimProcess, NULL, 0, threatStartRoutineAddress,
remoteBuffer, 0, NULL);

CloseHandle(hVictimProcess);

The easiest way to identify DLL injection is by identifying this
trademark pattern of Windows API calls in disassembly.

In DLL injection, the launcher never calls a malicious function: the
malicious code is located in DllMain, which is automatically called
by the OS when the DLL is loaded by the LoadLibrary thread.

27



DLL Injection

DLL injection viewed in a debugger. Function calls are labelled❶–❻:

28



DLL Injection

Once you find DLL injection activity in disassembly, you should start
looking for the strings containing the names of the malicious DLL and
the victim process.

They must be accessed before this code executes. The victim
process name can often be found in a strncmp function (or
equivalent) when the launcher determines the victim process’s PID.

To find the malicious DLL name, we could set a breakpoint at
0x407735 and dump the contents of the stack to reveal the value of
Buffer as it is being passed to WriteProcessMemory.

29



Direct Injection

Direct Injection:

Like DLL injection, but instead of writing a separate DLL and forcing
the remote process to load it, direct-injection malware injects the
malicious code directly into the remote process.

Direct injection is more flexible, but requires a lot of customized code
in to run successfully without negatively impacting the host process.

This can be used to inject compiled code, but more often, shellcode.

There will typically be two calls to VirtualAllocEx and
WriteProcessMemory:

▷ The first allocates and writes the data used by the remote thread.
▷ The second allocates and writes the remote thread code.

The call to CreateRemoteThread contains location of the remote
thread code (lpStartAddress) and the data (lpParameter).

30



Direct Injection

Since the data and functions used by the remote thread must exist in
the victim process, normal compilation procedures will not work.

For example, strings are not in the normal .data section, and
LoadLibrary/GetProcAddress will need to be called to access
functions that are not already loaded.

To analyze the remote thread’s code, you may need to debug the
malware and dump all memory buffers that occur before calls to
WriteProcessMemory to be analyzed in a disassembler.

Since these buffers most often contain shellcode, you will need
shellcode analysis skills.

31



Process Hollowing

Launcher

Process Injection

Process Hollowing

Hook Injection

Detours

APC Injection

32



Process Replacement (Process Hollowing)

Rather than inject code into a host program, a method known as
process replacement overwrites the memory space of a running
process with a malicious executable, providing it with the same
privileges as the process it is replacing.

This is used when a malware wants to disguise as a legitimate
process, without the risk of crashing it through process injection.

Key to process replacement is creating a process in a suspended
state: the process will be loaded into memory, but the primary thread
of the process is suspended.

The program will not do anything until an external program resumes
the primary thread, causing the program to start running.

33



Process Hollowing

BOOL CreateProcessA(
[in, optional] LPCSTR lpApplicationName,
[in, out, optional] LPSTR lpCommandLine,
[in, optional] LPSECURITY_ATTRIBUTES lpProcessAttributes,
[in, optional] LPSECURITY_ATTRIBUTES lpThreadAttributes,
[in] BOOL bInheritHandles,
[in] DWORD dwCreationFlags,
[in, optional] LPVOID lpEnvironment,
[in, optional] LPCSTR lpCurrentDirectory,
[in] LPSTARTUPINFOA lpStartupInfo,
[out] LPPROCESS_INFORMATION lpProcessInformation

);

One of the possible values for dwCreationFlags:

CREATE_SUSPENDED (0x4): The primary thread of the new process
is created in a suspended state, and does not run until the
ResumeThread function is called.

34



Process Hollowing

The following example shows how this suspended state is achieved
by passing CREATE_SUSPENDED (0x4) for the dwCreationFlags
parameter when performing the call to CreateProcess:

00401535 push edi ; lpProcessInformation
00401536 push ecx ; lpStartupInfo
00401537 push ebx ; lpCurrentDirectory
00401538 push ebx ; lpEnvironment
00401539 push CREATE_SUSPENDED ; dwCreationFlags
0040153B push ebx ; bInheritHandles
0040153C push ebx ; lpThreadAttributes
0040153D lea edx, [esp+94h+CommandLine]
00401541 push ebx ; lpProcessAttributes
00401542 push edx ; lpCommandLine
00401543 push ebx ; lpApplicationName
00401544 mov [esp+0A0h+StartupInfo.dwFlags], 101h
0040154F mov [esp+0A0h+StartupInfo.wShowWindow], bx
00401557 call ds:CreateProcessA

35



Process Hollowing

The next example shows a C pseudocode for process replacement.

CreateProcess(...,"svchost.exe",...,CREATE_SUSPENDED,...);
ZwUnmapViewOfSection(...);
VirtualAllocEx(...,ImageBase,SizeOfImage,...);
WriteProcessMemory(...,headers,...);
for (i=0; i < NumberOfSections; i++) {

WriteProcessMemory(...,section,...);
}
SetThreadContext();
...
ResumeThread();

36



Process Hollowing

Once the process is created, the next step is to replace the victim
process’s memory with the malicious executable, typically using
ZwUnmapViewOfSection to release all memory pointed to by a
section passed as a parameter.

After memory is unmapped, the loader performs VirtualAllocEx
to allocate new memory for the malware, and uses
WriteProcessMemory to write each of the malware sections to the
victim process space, typically in a loop, as shown in the example.

Next, the malware restores the victim process environment so that
the malicious code can run by calling SetThreadContext to set the
entry point to point to the malicious code.

Finally, ResumeThread is called to initiate the malware, which has
now replaced the victim process.

37



Process Hollowing

Process replacement is an effective way for malware to appear
non-malicious.

By masquerading as the victim process, the malware is able to
bypass firewalls or intrusion prevention systems (IPSs) and avoid
detection by appearing to be a normal Windows process.

Also, by using the original binary’s path, the malware deceives the
savvy user who, when viewing a process listing, sees only the known
and valid binary executing, with no idea that it was unmapped.

38



Hook Injection

Launcher

Process Injection

Process Hollowing

Hook Injection

Detours

APC Injection

39



Hook Injection

Hook injection:

A method to load malware that takes advantage of Windows hooks,
which are used to intercept messages destined for applications.

Malware authors use hook injection to accomplish two things:

▷ Ensure that malicious code will run whenever a particular
message is intercepted

▷ Ensure that a particular DLL is loaded in a victim process’s
memory space

Users generate events that are sent to the OS, which then sends
messages created by those events to threads registered to receive
them. An attacker can insert a malicious DLL to intercept them.

40



Hook Injection

Event and message flow in Windows with and without hook injection
41



Hook Injection: Local and Remote Hooks

There are two types of Windows hooks:

▷ Local hooks are used to observe or manipulate messages
destined for an internal process.

▷ Remote hooks are used to observe or manipulate messages
destined for a remote process (another process on the system).

Remote hooks are available in two forms:

▷ High-level remote hooks: require that the hook procedure be an
exported function contained in a DLL, which will be mapped by
the OS into the process space of a hooked thread or all threads.

▷ Low-level remote hooks: require that the hook procedure be
contained in the process that installed the hook. This procedure
is notified before the OS gets a chance to process the event.

42



Hook Injection: Keyloggers Using Hooks

Hook injection is frequently used in malicious applications known as
keyloggers, which record keystrokes.

Keystrokes can be captured by registering high- or low-level hooks
using the WH_KEYBOARD or WH_KEYBOARD_LL hook procedure types,
respectively.

▷ For WH_KEYBOARD procedures, the hook will often be running in
the context of a remote process, but it can also run in the
process that installed the hook.

▷ For WH_KEYBOARD_LL procedures, the events are sent directly to
the process that installed the hook, so the hook will be running in
the context of the process that created it.

Using either hook type, a keylogger can intercept keystrokes and log
them to a file or alter them before passing them through.

43



Hook Injection: Using SetWindowsHookEx

The principal function call used to perform remote Windows hooking
is SetWindowsHookEx, which has the following parameters:

▷ idHook. Specifies the type of hook procedure to install.
▷ lpfn. Points to the hook procedure.
▷ hMod. For high-level hooks, the handle to the DLL containing the
hook procedure defined by lpfn. For low-level hooks, the local
module in which the lpfn procedure is defined.

▷ dwThreadId.  the identifier of the thread with which the hook
procedure is to be associated. If zero, the hook procedure is
associated with all existing threads running in the same desktop
as the calling thread. This must be zero for low-level hooks.

The hook procedure must call CallNextHookEx, which ensures that
the next hook procedure in the call chain gets the message and that
the system continues to run properly.

44



Hook Injection: Thread Targeting

When targeting a specific dwThreadId, malware generally includes
instructions for determining which system thread identifier to use, or
it is designed to load into all threads.

Malware will load into all threads only if it’s a keylogger or the
equivalent (when the goal is message interception). However, loading
into all threads can degrade the running system and may trigger an
IPS. Therefore, if the goal is to simply load a DLL in a remote process,
only a single thread will be injected, to remain stealthy.

If a malicious application hooks a Windows message that is used
frequently, it’s more likely to trigger an IPS, so malware will often set a
hook with a message that is not often used, such as WH_CBT (a
computer-based training message).

45



Hook Injection: Thread Targeting

The following example shows the assembly code for performing hook
injection in order to load a DLL in a different process’s memory space.

00401100 push esi
00401101 push edi
00401102 push offset LibFileName ; "hook.dll"
00401107 call LoadLibraryA
0040110D mov esi, eax
0040110F push offset ProcName ; "MalwareProc"
00401114 push esi ; hModule
00401115 call GetProcAddress
0040111B mov edi, eax
0040111D call GetNotepadThreadId
00401122 push eax ; dwThreadId
00401123 push esi ; hmod
00401124 push edi ; lpfn
00401125 push WH_CBT ; idHook
00401127 call SetWindowsHookExA

46



Hook Injection: Thread Targeting

In the previous example, the malicious DLL (hook.dll) is loaded by
the malware, and the malicious hook procedure address is obtained.

The hook procedure, MalwareProc, calls only CallNextHookEx.

SetWindowsHookEx is then called for a thread in notepad.exe
(assuming that it is running). GetNotepadThreadId is a locally
defined function that obtains a dwThreadId for notepad.exe.

Finally, a WH_CBTmessage is sent to the injected notepad.exe to
force hook.dll to be loaded by notepad.exe.

Once hook.dll is injected, it can execute the full malicious code
stored in DllMain, while disguised as the notepad.exe process.

Since MalwareProc calls only CallNextHookEx, it should not
interfere with incoming messages, but malware often immediately
calls LoadLibrary and UnhookWindowsHookEx in DllMain to
ensure that incoming messages are not impacted.

47



Detours

Launcher

Process Injection

Process Hollowing

Hook Injection

Detours

APC Injection

48



Detours

Detours is a library developed by Microsoft Research in 1999. It was
originally intended as a way to easily instrument and extend existing
OS and application functionality. The Detours library makes it
possible for a developer to make application modifications simply.

Malware authors use the Detours library to perform import table
modification, attach DLLs to existing program files, and add function
hooks to running processes.

Malware authors most commonly use Detours to add new DLLs to
existing binaries on disk. The malware modifies the PE structure and
creates a section named .detour, which is typically placed between
the export table and any debug symbols. The .detour section
contains the original PE header with a new import address table. The
malware author then uses Detours to modify the PE header to point to
the new import table, by using the setdll tool provided with the
Detours library.

49



Detours

A PEview of Detours used to trojanize notepad.exe is shown:

Notice in the .detour section at❶ that the new import table
contains evil.dll, seen at❷, which will now be loaded whenever
Notepad is launched, as it continues to operate as usual.

50



APC Injection

Launcher

Process Injection

Process Hollowing

Hook Injection

Detours

APC Injection

51



APC Injection

We saw that by creating a thread using CreateRemoteThread, we
can invoke functionality in a remote process.

However, thread creation requires overhead, so it would be more
efficient to invoke a function on an existing thread. This capability
exists in Windows as the asynchronous procedure call (APC).

Every thread has a queue of APCs attached to it, which are processed
when the thread is in an alertable state, e.g. when they call SleepEx,
WaitForSingleObjectEx, and WaitForMultipleObjectsEx.
These functions give the thread a chance to process its waiting APCs.

When the APC queue is complete, the thread continues along its
regular execution path.

52



APC Injection

Malware uses APCs to preempt threads in an alertable state and get
executed.

APCs come in two forms:

▷ kernel-mode APC: generated for the system or a driver.

▷ user-mode APC: generated for an application.

Malware generates user-mode APCs from both kernel and user space
using APC injection.

53



APC Injection: APC Injection from User Space

From user space, another thread can queue a function to be invoked
in a remote thread, using the API function QueueUserAPC, with these
parameters:

▷ pfnAPC,
▷ hThread, and
▷ dwData.

A call to QueueUserAPC is a request for the thread whose handle is
hThread to run the function pfnAPC with the parameter dwData.

Because a thread must be in an alertable state in order to run a
user-mode APC, malware will look to target threads in processes that
are likely to go into that state.

Luckily for the malware analyst, WaitForSingleObjectEx is the
most common call in the Windows API, and there are usually many
threads in the alertable state.

54



APC Injection: APC Injection from User Space

The following example  shows APC injection from a user-mode
application, i.e., how malware can use QueueUserAPC to force a DLL
to be loaded in the context of another process:

00401DA9 push [esp+4+dwThreadId] ; dwThreadId
00401DAD push 0 ; bInheritHandle
00401DAF push 10h ; dwDesiredAccess
00401DB1 call ds:OpenThread
00401DB7 mov esi, eax
00401DB9 test esi, esi
00401DBB jz short loc_401DCE
00401DBD push [esp+4+dwData] ; dwData = dbnet.dll
00401DC1 push esi ; hThread
00401DC2 push ds:LoadLibraryA ; pfnAPC
00401DC8 call ds:QueueUserAPC

55



APC Injection: APC Injection from User Space

Before we arrive at this code, the malware has already picked a target
thread.

During analysis, you can find thread-targeting code by looking for API
calls such as CreateToolhelp32Snapshot, Process32First,
and Process32Next for the malware to find the target process.

These API calls will often be followed by calls to Thread32First
and Thread32Next, which will be in a loop looking to target a thread
contained in the target process.

Alternatively, malware can also use
Nt/ZwQuerySystemInformation with the
SYSTEM_PROCESS_INFORMATION information class to find the
target process.

56



APC Injection: APC Injection from User Space

Once a target-thread identifier is obtained, the malware uses it to
open a handle to the thread.

In this example, the malware is looking to force the thread to load a
DLL in the remote process, so you see a call to QueueUserAPC with
the pfnAPC set to LoadLibraryA.

The parameter to be sent to LoadLibraryA will be contained in
dwData (in this example, that was set to the DLL dbnet.dll earlier
in the code). Once this APC is queued and the thread goes into an
alertable state, LoadLibraryA will be called by the remote thread,
causing the target process to load dbnet.dll.

In this example, the malware targeted svchost.exe, which is a
popular target for APC injection because its threads are often in an
alertable state. Malware may APC-inject into every thread of
svchost.exe just to ensure that execution occurs quickly.

57



APC Injection: APC Injection from Kernel Space

Malware drivers and rootkits often wish to execute code in user
space, but there is no easy way for them to do it.

One method they use is to perform APC injection from kernel space
to get their code execution in user space.

A malicious driver can build an APC and dispatch a thread to execute
it in a user-mode process (most often svchost.exe). APCs of this
type often consist of shellcode.

Device drivers leverage two major functions in order to utilize APCs:
KeInitializeApc and KeInsertQueueApc.

58



APC Injection: APC Injection from Kernel Space

The following example shows an example of these functions in use in
a rootkit:

000119BD push ebx
000119BE push 1
000119C0 push [ebp+arg_4]
000119C3 push ebx
000119C4 push offset sub_11964
000119C9 push 2
000119CB push [ebp+arg_0]
000119CE push esi
000119CF call ds:KeInitializeApc
000119D5 cmp edi, ebx
000119D7 jz short loc_119EA
000119D9 push ebx
000119DA push [ebp+arg_C]
000119DD push [ebp+arg_8]
000119E0 push esi
000119E1 call edi ;KeInsertQueueApc

59



APC Injection: APC Injection from Kernel Space

The APC must be initialized with a call to KeInitializeApc. If the
6th parameter (NormalRoutine) is non-zero, with the 7th parameter
(ApcMode) set to 1, then we are looking at a user-mode type.

KeInitializeAPC initializes a KAPC structure, which must be
passed to KeInsertQueueApc to place the APC object in the target
thread’s corresponding APC queue. Once KeInsertQueueApc is
successful, the APC will be queued to run.

In this example, the malware targeted svchost.exe, but to make
that determination, we would need to trace back the second-to-last
parameter pushed on the stack to KeInitializeApc. This
parameter contains the thread that will be injected.

In this case, it is contained in arg_0. Therefore, we would need to
look back in the code to check how arg_0 was set to see that
svchost.exe’s threads were targeted.

60



Next: Data Encoding in Malware

60


	Launcher
	Process Injection
	DLL Injection
	Direct Injection

	Process Hollowing
	Hook Injection
	Local and Remote Hooks
	Keyloggers Using Hooks
	Using SetWindowsHookEx
	Thread Targeting

	Detours
	APC Injection
	APC Injection from User Space
	APC Injection from Kernel Space


