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Reading Material

▶ Part IV: Malware Functionality

▷ Ch.13: Data Encoding

“Practical Malware Analysis: The
Hands-on Guide to Dissecting
Malicious Software”, Michael
Sikorski and Andrew Honig, 2012
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Objectives

▷ Why does malware use outdated encoding/encryption schemes.

▷ What are some common ones.

▷ How to identify their use.

▷ How to identify custom schemes.

▷ How to write decoders and decryptors.
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The Goal of Analyzing Encoding Algorithms

In the context of malware analysis, the term data encoding refers to
all forms of content modification for the purpose of hiding intent. E.g.:

▷ To hide configuration information, such as a
command-and-control domain

▷ To save information to a staging file before stealing it

▷ To store strings used by the malware and decode them just
before they are needed

▷ To disguise the malware as a legitimate tool

So their main purpose is obfuscation (to avoid detection or frustrating
the analyst!), not encryption for confidentiality.
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Simple Ciphers: Why are they used at all

Simple ciphers are often disparaged for being unsophisticated, but
they offer many advantages for malware:

▷ They are small enough to be used in space-constrained
environments such as exploit shellcode.

▷ They are less obvious than more complex ciphers.

▷ They have low overhead and thus little impact on performance.

Their goal is not to be immune to detection; rather an easy way to
prevent basic analysis from identifying their activities.
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Simpler Ciphers: Caesar Cipher

THIS MALWARE IS WRITTEN BY JULIUS CAESAR
AOPZ THSDHYL PZ DYPAALU IF QBSPBZ JHLZHY
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Simple Ciphers: XOR

Simple XOR cipher, aka single-byte XOR encoding: Each byte of
plaintext is XORed with a constant byte value.

An example of single-byte XOR encoding. Can you tell what the XOR key is?

(Q: what are some good properties of XOR function for this purpose?)
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Brute-Forcing XOR Encoding

5F 48 42 12 10 12 12 12 16 12 1D 12 ED ED 12 12 _HB.............
AA 12 12 12 12 12 12 12 52 12 08 12 12 12 12 12 ........R.......
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 ................
12 12 12 12 12 12 12 12 12 12 12 12 12 13 12 12 ................
A8 02 12 1C 0D A6 1B DF 33 AA 13 5E DF 33 82 82 ........3..^.3..
46 7A 7B 61 32 62 60 7D 75 60 73 7F 32 7F 67 61 Fz{a2b`}u`s.2.ga
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NULL-Preserving Single-Byte XOR Encoding

A weakness of the single-byte XOR encoding: If the encoded content
has a large number of NULL bytes, the“key” becomes obvious.

Original XOR

buf[i] ^= key;

NULL-preserving XOR

if (buf[i] != 0 && buf[i] != key)
buf[i] ^= key;
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Brute-Forcing XOR Encoding

5F 48 42 00 10 00 00 00 16 00 1D 00 ED ED 00 00 _HB.............
AA 00 00 00 00 00 00 00 52 00 08 00 00 00 00 00 ........R.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 13 00 00 ................
A8 02 00 1C 0D A6 1B DF 33 AA 13 5E DF 33 82 82 ........3..^.3..
46 7A 7B 61 32 62 60 7D 75 60 73 7F 32 7F 67 61 Fz{a2b`}u`s.2.ga

12



Identifying XOR Loops in IDA Pro

▷ In disassembly, XOR loops can be identified by small loops with
an XOR instruction in the middle of a loop.

▷ The easiest way to find an XOR loop in IDA Pro is to search for all
instances of the XOR instruction.

Searching for XOR in IDA Pro.
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Identifying XOR Loops in IDA Pro

Graphical view of single-byte XOR loop 14



Other Simple Encoding Schemes

ADD, SUB

ADD and SUB are not reversible, so they need to be used in tandem
(one to encode and the other to decode).

ROL, ROR

Rotate the bits within a byte left, right (one to encode, one to decode)

Multibyte

Using longer than 1 byte key (often 4 or 8), typically XOR.

Chained or loopback

Uses the content itself as part of the key, e.g., the original key is
applied at one side of the plaintext (start or end), and the encoded
output is used as the key for the next block.
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Base64

Base64 encoding: encoding data in base 64!

Symbols needed for each base:

▷ Base2: 0,1

▷ Base8: 0,1,2,3,4,5,6,7

▷ Base10: 0,1,2,3,4,5,6,7,8,9

▷ Base16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

▷ Base64: …?
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Base64

Base64 encoding: encoding data in base 64!

Symbols needed for each base:

▷ Base2: 0,1

▷ Base8: 0,1,2,3,4,5,6,7

▷ Base10: 0,1,2,3,4,5,6,7,8,9

▷ Base16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

▷ Base64: A–Z, a–z, 0–9, +, /
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Base64

Base64 encoding: encoding data in base 64!

Symbols needed for each base:

▷ Base2: 0,1

▷ Base8: 0,1,2,3,4,5,6,7

▷ Base10: 0,1,2,3,4,5,6,7,8,9

▷ Base16: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
▷ Base64: A–Z, a–z, 0–9, +, /

▷ used to represent binary data in an ASCII string format.
▷ originally developed to encode email attachments for transmission

(Multipurpose Internet Mail Extensions – MIME – standard), it is
now widely used for HTTP and XML.

▷ we also needed an additional character to indicate padding, often =
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Base64
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Base64

Text (ASCII) M a n
Source

Octets 77 (0x4d) 97 (0x61) 110 (0x6e)
Bits 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0

Sextets 19 22 5 46
Character T W F uBase64

encoded Octets 84 (0x54) 87 (0x57) 70 (0x46) 117 (0x75)

Text (ASCII) M a
Source

Octets 77 (0x4d) 97 (0x61)
Bits 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0

Sextets 19 22 4 Padding
Character T W E =Base64

encoded Octets 84 (0x54) 87 (0x57) 69 (0x45) 61 (0x3D)

Text (ASCII) M
Source

Octets 77 (0x4d)
Bits 0 1 0 0 1 1 0 1 0 0 0 0

Sextets 19 16 Padding Padding
Character T Q = =Base64

encoded Octets 84 (0x54) 81 (0x51) 61 (0x3D) 61 (0x3D)

18



Base64

Content-Type: multipart/alternative;
boundary="_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_"
MIME-Version: 1.0
--_002_4E36B98B966D7448815A3216ACF82AA201ED633ED1MBX3THNDRBIRD_
Content-Type: text/html; charset="utf-8"
Content-Transfer-Encoding: base64

SWYgeW91IGFyZSByZWFkaW5nIHRoaXMsIHlvdSBwcm9iYWJseSBzaG91bGQganVzdCBza2lwIHRoaX
MgY2hhcHRlciBhbmQgZ28gdG8gdGhlIG5leHQgb25lLiBEbyB5b3UgcmVhbGx5IGhhdmUgdGhlIHRp
bWUgdG8gdHlwZSB0aGlzIHdob2xlIHN0cmluZyBpbj8gWW91IGFyZSBvYnZpb3VzbHkgdGFsZW50ZW
QuIE1heWJlIHlvdSBzaG91bGQgY29udGFjdCB0aGUgYXV0aG9ycyBhbmQgc2VlIGlmIH
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Identifying and Decoding Base64

GET /X29tbVEuYC8=/index.htm
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive
Cookie: Ym90NTQxNjQ

GET /c2UsYi1kYWM0cnUjdFlvbiAjb21wbFU0YP==/index.htm
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)
Host: www.practicalmalwareanalysis.com
Connection: Keep-Alive
Cookie: Ym90NTQxNjQ
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Common Cryptographic Algorithms

The simple cipher schemes are trivially susceptible to brute-force.
Their main purpose is to obscure.

Why then, does malware not always take advantage of serious
cryptography for hiding its sensitive information?

▷ simple cipher schemes are easy and often sufficient.

▷ Cryptographic libraries can be large

▷ Linking to code that exists on the host may reduce portability.

▷ Standard cryptographic libraries are easily detected (via imports,
function matching, or identification of cryptographic constants).

▷ Symmetric encryption algorithms need to worry about how to
hide the key.
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Identifying standard cryptography: Strings and Imports

One way to identify standard cryptographic algorithms is by
recognizing strings that refer to the use of cryptography. This can
occur when cryptographic libraries such as OpenSSL are statically
compiled into malware. Example:

OpenSSL 1.0.0a
SSLv3 part of OpenSSL 1.0.0a
TLSv1 part of OpenSSL 1.0.0a
SSLv2 part of OpenSSL 1.0.0a
You need to read the OpenSSL FAQ,

http://www.openssl.org/support/faq.html
%s(%d): OpenSSL internal error, assertion failed: %s
AES for x86, CRYPTOGAMS by <appro@openssl.org>
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Identifying standard cryptography: Strings and Imports

Another way to look for standard cryptography is to identify imports
that reference cryptographic functions, e.g. that provide services
related to hashing, key generation, and encryption.

Most of the Microsoft functions that pertain to cryptography start
with Crypt, CP (for Cryptographic Provider), or Cert.

IDA Pro imports listing showing cryptographic functions.
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Identifying standard cryptography: Cryptographic Constants

Another method is via tools that search for commonly used
cryptographic constants. This works because most cryptographic
algorithms employ some type of magic constant (some fixed string of
bits that is associated with the essential structure of the algorithm)

Example tools: IDA Pro’s FindCrypt2 and Krypto ANALyzer.

Example output of the IDA Pro’s plugin: FindCrypt2.

NOTE: Some cryptographic algorithms, like IDEA and RC4, build their
structures on the fly, and thus are not identified. RC4, because it is
also small and easy to implement, is often employed by malware.
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Identifying standard cryptography: Cryptographic Constants

Another tool that uses the same principles is the Krypto ANALyzer
(KANAL). KANAL is a plug-in for PEiD. It also recognizes Base64
tables and cryptography-related function imports.

Example PEiD and Krypto ANALyzer (KANAL) output, finding a Base64 table,
a CRC32 constant, and several Crypt... import functions in a malware.
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Identifying standard cryptography: High-Entropy Content

Another way to identify the use of cryptography is to search for
high-entropy content. In addition to potentially highlighting
cryptographic constants or cryptographic keys, this technique can
also identify encrypted content itself.

The IDA Entropy Plugin is one tool that implements this technique:

IDA Pro Entropy Plugin
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Identifying standard cryptography: High-Entropy Content

Entropy graph for a malicious executable.
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Identifying Custom Encoding

Malware often uses homegrown encoding schemes.

One such scheme is to layer multiple simple encoding methods. For
example, malware may perform one round of XOR encryption and
then perform Base64 encoding on the result.

Another scheme is to simply develop a custom algorithm, possibly
with similarities to a standard published cryptographic algorithm.
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Identifying Custom Encoding

Finding the encoding algorithm the hard way entails tracing the
thread of execution from the suspicious input or output.

Inputs and outputs can be treated as generic categories. No matter
whether the malware sends a network packet, writes to a file, or
writes to standard output, those are all outputs.

If outputs are suspected of containing encoded data, then the
encoding function will occur prior to the output.

Conversely, decoding will occur not far after an input. Follow the
execution path forward.

Output functions are similar, except that the tracing must be done
opposite the flow of execution.
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Identifying Custom Encoding

Example function graph showing an encrypted write.
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Advantages of Custom Encoding to the Attacker

For the attacker, custom-encoding methods have their advantages:

- they can retain the characteristics of simple encoding schemes
(small size and non-obvious use of encryption).

- making the job of the reverse engineer more difficult.

With many types of standard cryptography, if the cryptographic
algorithm is identified and the key found, it is fairly easy to write a
decryptor using standard libraries.

With custom encoding, attackers can create any encoding scheme
they want, which may or may not use an explicit key (the key can be
embedded (and obscured) within the code itself).

Even if the attacker uses a key and the key is found, it is unlikely that a
freely available library will be available to assist with the decryption.
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Decoding

Typically we want to decode the encoded content. Two ways:

▷ Reprogram the functions (build a decoder).

▷ Use the functions as they exist in the malware itself.
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Self-Decoding

self-decoding: (in a debugger) let the program itself perform the
decryption in the course of its normal activities

cheap and effective, but drawbacks:

▷ you must isolate the decryption function and set a breakpoint
directly after the decryption routine.

▷ if the malware doesn’t happen to decrypt the information you are
interested in (or you cannot figure out how to coax the malware
into doing so), you are out of luck.
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Manual Programming of Decoding Functions

▷ For simple ciphers and encoding methods, you can often use the
standard functions available within a programming language.
For example, base64.b64decode(str) in python for Base64
decoding.

▷ For simple encoding methods that lack standard functions, such
as XOR encoding or Base64 encoding that uses a modified
alphabet, often the easiest course of action is to just program or
script the encoding function in the language of your choice.

from Crypto.Cipher import DES
des = DES.new(key, DES.MODE_ECB)
cfile = open('encrypted_file','r')
cbuf = cfile.read()
print obj.decrypt(cbuf)
cfile.close()
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Using Instrumentation for Generic Decryption

Instrumentation: executing a programme using directed input in order
to diagnose errors and to write trace information.

It is useful when dealing with cases where the cryptography is too
complex to emulate and is also nonstandard.
Once encoding or decoding routines are isolated and the parameters
are understood, it is possible to exploit malware to decode arbitrary
content using instrumentation, effectively using it against itself.

004011A9 push ebp
004011AA mov ebp, esp
004011AC sub esp, 14h
004011AF push ebx
004011B0 mov [ebp+counter], 0
004011B7 mov [ebp+NumberOfBytesWritten], 0
...
004011F5 loc_4011F5: ; CODE XREF: encrypted_Write+46j
004011F5 call encrypt_Init
004011FA
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Using Instrumentation for Generic Decryption

004011FA loc_4011FA: ; CODE XREF: encrypted_Write+7Fj
004011FA mov ecx, [ebp+counter]
004011FD cmp ecx, [ebp+nNumberOfBytesToWrite]
00401200 jnb short loc_40122A
00401202 mov edx, [ebp+lpBuffer]
00401205 add edx, [ebp+counter]
00401208 movsx ebx, byte ptr [edx]
0040120B call encrypt_Byte
00401210 and eax, 0FFh
00401215 xor ebx, eax
00401217 mov eax, [ebp+lpBuffer]
0040121A add eax, [ebp+counter]
0040121D mov [eax], bl
0040121F mov ecx, [ebp+counter]
00401222 add ecx, 1
00401225 mov [ebp+counter], ecx
00401228 jmp short loc_4011FA
0040122A
0040122A loc_40122A: ; CODE XREF: encrypted_Write+57j
0040122A push 0 ; lpOverlapped
0040122C lea edx, [ebp+NumberOfBytesWritten]

39



Using Instrumentation for Generic Decryption

We can find out a couple of key information through analysis:

▷ The function sub_40112F initializes the encryption, and is the
start of the encryption routine, called at address 0x4011F5. In
the listing, this function is labeled encrypt_Init.

▷ The encryption has completed when we reach at 0x40122A.

▷ We know several of the variables and arguments that are used in
the encryption function. These include the counter and two
arguments: the buffer (lpBuffer) to be encrypted or decrypted
and the length (nNumberOfBytesToWrite) of the buffer.

Our high-level goal is to instrument the malware so that it takes the
encrypted file, the malware itself, and runs it through the same routine
it used for encryption. (We are assuming based on the use of XOR
that the function is reversible.)
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Using Instrumentation for Generic Decryption

This high-level goal can be broken down into a series of tasks:

1. Set up the malware in a debugger.

2. Prepare the encrypted file for reading and prepare an output file
for writing.

3. Allocate memory inside the debugger so that the malware can
reference the memory.

4. Load the encrypted file into the allocated memory region.

5. Set up the malware with appropriate variables and arguments for
the encryption function.

6. Run the encryption function to perform the encryption.

7. Write the newly decrypted memory region to the output file

The following Immunity Debugger python script does these tasks.
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Using Instrumentation for Generic Decryption

import immlib
def main ():

imm = immlib.Debugger()
cfile = open("C:\\enc_file", "rb") # Open encrypted file for read
pfile = open("decrypted_file", "w") # Open file for plaintext
buffer = cfile.read() # Read encrypted file into buffer
sz = len(buffer) # Get length of buffer
membuf = imm.remoteVirtualAlloc(sz) # Allocate memory within debugger
imm.writeMemory(membuf, buffer) # Copy into debugged process's memory

imm.setReg("EIP", 0x004011A9) # Start of function header
imm.setBreakpoint(0x004011b7) # After function header
imm.Run() # Execute function header

regs = imm.getRegs()
imm.writeLong(regs["EBP"]+16, sz) # Set NumberOfBytesToWrite stack variable
imm.writeLong(regs["EBP"]+8, membuf) # Set lpBuffer stack variable

imm.setReg("EIP", 0x004011f5) # Start of crypto
imm.setBreakpoint(0x0040122a) # End of crypto loop
imm.Run() # Execute crypto loop

output = imm.readMemory(membuf, sz) # Read answer
pfile.write(output) # Write answer 42



Using Instrumentation for Generic Decryption

▷ immlib.Debugger provides programmatic access to debugger.

▷ Note the rb option on the python open command that ensures
that data is interpreted correctly as “binary” when reading.

▷ imm.remoteVirtualAlloc allocates memory within the
malware process space inside the debugger. This is the memory
that can be directly referenced by the malware.

▷ imm.getRegs gets the current register values so that EBP can
be used to locate the two arguments: the memory buffer to be
decrypted and its size. imm.writeLong sets these arguments.
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Using Instrumentation for Generic Decryption

The actual running of the code is done in two stages:

▶ The initial portion of code run is the start of the function, which
sets up the stack frame and sets the counter to zero. This is
from 0x004011A9 (where EIP is set) until 0x004011b7 (where
a breakpoint, set by imm.setBreakpoint, stops execution).

▶ The second part is the actual encryption loop, from 0x004011f5
(where EIP is set), through the loop one time for each byte
decrypted, until the loop is exited and 0x0040122a is reached
(where the second breakpoint stops execution).

▷ Finally, the same buffer is read out of the process memory (using
imm.readMemory) and output to a file (using pfile.write).
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Using Instrumentation for Generic Decryption

In this example, the encryption function stood alone: It didn’t have
any dependencies and was fairly straightforward.

However, Some encoding functions require initialization, possibly with
a key, which may not even reside in the malware, but acquired from an
outside source over the network.

In order to support decoding in these cases, it is necessary to first
have the malware properly prepared:

- it may merely mean that the malware needs to start up in the
normal fashion, if, e.g., it uses an embedded password as a key.

- in other cases, it may be necessary to customize the external
environment. For example, it may be necessary either to script
the key-setup algorithm with the appropriate key material or to
simulate the server sending the key.
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Next: Malware-Focused Network Signatures
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